Description
给出 \(n\) 个三角形,求这 \(n\) 个三角形并的面积。
数据范围:\(1 \leq n \leq 100\),\(-10^6 \leq x, y \leq 10^6\)。
Solution
扫描线的做法大家都会,这篇题解的做法是自适应辛普森积分。
记 \(f(t)\) 表示:给出的 \(n\) 个三角形与直线 \(x = t\) 的交集长度。
那么答案即为:
\[\int_a^b f(x) \ \text{dx}
\]
其中 \(a, b\) 分别表示输入的 \(x\) 中的最小值和最大值。
那么可以使用自适应辛普森积分做。现在的关键是要如何求出任意一个 \(f(t)\)。
对于每一个三角形,考虑求出这个三角形与直线 \(x = t\) 的相交部分是哪一段区间,把这些区间提出来,区间合并即可求出函数值。计算一个函数值的时间复杂度是 \(\mathcal{O}(n \log n)\) 的,可以接受。
然后需要提高精度:
- 可以在递归过程中设置一个强制执行的最少迭代层数。
- 可以将每个三角形的最小 \(x\) 值和最大 \(x\) 值提出来后排序,对所有相邻点构成的区间求积分,将这些积分相加,就可以得到最后大区间 \([a, b]\) 的积分。
Code
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
const double eps = 1e-9;
const double INF = 1e6;
int sgn(double n) {
if (fabs(n) < eps) return 0;
return n > 0 ? 1 : -1;
}
int dcmp(double x, double y) {
return sgn(x - y);
}
struct point {
double x, y;
point() { x = y = 0; }
point(double A, double B) : x(A), y(B) {}
};
typedef point vec;
vec operator + (vec a, vec b) { return vec(a.x + b.x, a.y + b.y); }
vec operator - (vec a, vec b) { return vec(a.x - b.x, a.y - b.y); }
vec operator * (vec a, double b) { return vec(a.x * b, a.y * b); }
vec operator / (vec a, double b) { return vec(a.x / b, a.y / b); }
bool operator < (point a, point b) {
if (dcmp(a.x, b.x)) return a.x < b.x;
return a.y < b.y;
}
double cross(vec a, vec b) {
return a.x * b.y - a.y * b.x;
}
point line_intersection(point A, point B, point C, point D) {
point p = A, q = C;
vec x = B - A, y = D - C;
vec u = q - p;
double t = cross(u, y) / cross(x, y);
return p + x * t;
}
const int N = 110;
int n;
vector<point> a[N];
int t;
double pos[N * 2];
int m;
struct range {
double l, r;
range() {}
range(double A, double B) : l(A), r(B) {}
} b[N];
bool ruler(range a, range b) {
if (dcmp(a.l, b.l)) return a.l < b.l;
return a.r < b.r;
}
double f(double x) {
point Ga = point(x, 0), Gb = point(x, 1);
m = 0;
for (int i = 1; i <= n; i ++) {
vector<point> u = a[i];
if (dcmp(x, u[0].x) < 0) continue;
if (dcmp(x, u[2].x) > 0) continue;
if (!dcmp(u[0].x, u[1].x) && !dcmp(u[0].x, x)) {
b[++ m] = range(u[0].y, u[1].y);
} else if (!dcmp(u[1].x, u[2].x) && !dcmp(u[1].x, x)) {
b[++ m] = range(u[1].y, u[2].y);
} else {
vector<double> seq;
seq.clear();
for (int j = 0; j < 3; j ++) {
point A = u[j], B = u[(j + 1) % 3];
if (B < A) swap(A, B);
if (dcmp(x, A.x) < 0) continue;
if (dcmp(x, B.x) > 0) continue;
seq.push_back(line_intersection(A, B, Ga, Gb).y);
}
sort(seq.begin(), seq.end());
b[++ m] = range(seq[0], seq[seq.size() - 1]);
}
}
if (!m) return 0;
sort(b + 1, b + 1 + m, ruler);
double ans = 0;
double st = b[1].l, ed = b[1].r;
for (int i = 2; i <= m; i ++) {
if (dcmp(b[i].l, ed) > 0)
ans += ed - st,
st = b[i].l, ed = b[i].r;
else
ed = max(ed, b[i].r);
}
ans += ed - st;
return ans;
}
double simpson(double Lv, double Mv, double Rv, double len) {
return (Lv + Rv + 4 * Mv) * len / 6;
}
double asr(double l, double r, double Lv, double Mv, double Rv, int dep) {
double mid = (l + r) / 2;
double A = f((l + mid) / 2), B = f((mid + r) / 2);
double s = simpson(Lv, Mv, Rv, r - l);
double Ls = simpson(Lv, A, Mv, mid - l);
double Rs = simpson(Mv, B, Rv, r - mid);
if (!dcmp(s, Ls + Rs) && dep <= 0) return Ls + Rs;
return asr(l, mid, Lv, A, Mv, dep - 1) + asr(mid, r, Mv, B, Rv, dep - 1);
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i ++) {
for (int j = 0; j < 3; j ++) {
double x, y;
scanf("%lf%lf", &x, &y);
a[i].push_back(point(x, y));
}
sort(a[i].begin(), a[i].end());
pos[++ t] = a[i][0].x;
pos[++ t] = a[i][2].x;
}
sort(pos + 1, pos + 1 + t);
double ans = 0;
for (int i = 2; i <= t; i ++) {
if (!dcmp(pos[i - 1], pos[i])) continue;
double l = pos[i - 1], r = pos[i];
ans += asr(l, r, f(l), f((l + r) / 2), f(r), 5);
}
printf("%.2lf\n", ans);
return 0;
}