luogu P1587 [NOI2016] 循环之美

https://www.luogu.com.cn/problem/P1587

首先思考我们要求的是什么?

{ x k l y } = { x y } \large \begin{Bmatrix}\frac{xk^l}{y}\end{Bmatrix} =\begin{Bmatrix}\frac{x}{y}\end{Bmatrix} {yxkl​​}={yx​​}

x k l − y [ x k l y ] = x − y [ x y ] \large xk^l-y \begin{bmatrix}\frac{xk^l}{y} \end{bmatrix}=x-y \begin{bmatrix}\frac{x}{y} \end{bmatrix} xkl−y[yxkl​​]=x−y[yx​​]
k l ≡ 1 ( m o d    y ) k^l \equiv 1 (\mod y) kl≡1(mody)

可以得到我们实际上要求的是

∑ i = 1 n ∑ j = 1 m [ i ⊥ j ] [ j ⊥ k ] \sum_{i=1}^n\sum_{j=1}^m [i\perp j] [j \perp k] i=1∑n​j=1∑m​[i⊥j][j⊥k]

按照套路

∑ d = 1 m i n ( n , m ) μ ( d ) ∑ i = 1 n / d ∑ j = 1 m / d [ j d ⊥ k ] \large \sum\limits_{d=1}^{min(n, m)} \mu(d) \sum\limits_{i=1}^{n/d} \sum\limits_{j=1}^{m/d} [jd \perp k] d=1∑min(n,m)​μ(d)i=1∑n/d​j=1∑m/d​[jd⊥k]

= ∑ d = 1 m i n ( n , m ) μ ( d ) ( n / d ) ∑ j = 1 m / d [ j ⊥ k ] [ d ⊥ k ] \large = \sum\limits_{d=1}^{min(n, m)} \mu(d) (n/d) \sum\limits_{j=1}^{m/d} [j \perp k][d \perp k] =d=1∑min(n,m)​μ(d)(n/d)j=1∑m/d​[j⊥k][d⊥k]

设 g ( n ) = ∑ i = 1 n [ i ⊥ k ] g(n)=\sum\limits_{i=1}^n [i\perp k] g(n)=i=1∑n​[i⊥k]

容易发现 g ( n ) = ( n / k ) ϕ ( k ) + g ( n m o d    k ) g(n)=(n/k) \phi(k)+g(n \mod k) g(n)=(n/k)ϕ(k)+g(nmodk)
上式子

= ∑ d = 1 m i n ( n , m ) ( n / d ) g ( m / d ) μ ( d ) [ d ⊥ k ] \large = \sum\limits_{d=1}^{min(n, m)} (n/d) g(m/d) \mu(d) [d \perp k] =d=1∑min(n,m)​(n/d)g(m/d)μ(d)[d⊥k]
前两项显然可以整除分块,现在要计算的是后两项的区间和

记 f ( n ) = ∑ i = 1 n μ ( i ) [ i ⊥ k ] f(n)=\sum\limits_{i=1}^n \mu(i)[i \perp k] f(n)=i=1∑n​μ(i)[i⊥k]

区间和就可以表示为 f ( r ) − f ( l − 1 ) f(r)-f(l-1) f(r)−f(l−1)

考虑怎么快速计算 f f f

发现是两个积性函数卷在一起,还是一个积性函数

我们考虑让它卷上 [ i ⊥ k ] [i \perp k] [i⊥k]

得到杜教筛的那条式子

f ( n ) = ∑ i = 1 n [ i ⊥ k ] f ( n / i ) − ∑ i = 2 n [ i ⊥ k ] f ( n / i ) \large f(n)=\sum\limits_{i=1}^n[i \perp k] f(n/i)-\sum\limits_{i=2}^n[i\perp k] f(n/i) f(n)=i=1∑n​[i⊥k]f(n/i)−i=2∑n​[i⊥k]f(n/i)

考虑前面那一部分怎么算?

∑ i = 1 n [ i ⊥ k ] ∑ j = 1 n / i μ ( j ) [ j ⊥ k ] \sum\limits_{i=1}^n[i \perp k] \sum\limits_{j=1}^{n/i}\mu(j)[j\perp k] i=1∑n​[i⊥k]j=1∑n/i​μ(j)[j⊥k]
= ∑ i = 1 n ∑ j = 1 n / i μ ( j ) [ i j ⊥ k ] =\sum\limits_{i=1}^n\sum\limits_{j=1}^{n/i}\mu(j)[ij\perp k] =i=1∑n​j=1∑n/i​μ(j)[ij⊥k]

考虑枚举 i j ij ij

∑ i = 1 n ∑ d ∣ i μ ( d ) [ i ⊥ k ] \sum\limits_{i=1}^n \sum\limits_{d|i}\mu(d)[i\perp k] i=1∑n​d∣i∑​μ(d)[i⊥k]
∑ i = 1 n [ i ⊥ k ] ∑ d ∣ i μ ( d ) = 1 \sum\limits_{i=1}^n[i\perp k] \sum\limits_{d|i} \mu(d)=1 i=1∑n​[i⊥k]d∣i∑​μ(d)=1

于是乎就得到了

f ( n ) = 1 − ∑ i = 2 n [ i ⊥ k ] f ( n / i ) \large f(n)=1-\sum\limits_{i=2}^n[i\perp k] f(n/i) f(n)=1−i=2∑n​[i⊥k]f(n/i)

而 f ( n / i ) f(n/i) f(n/i)前面那个在整除分块的时候就是 g g g
大力杜教筛即可

code:

#include<bits/stdc++.h>
#define ll long long
#define N 5000050
using namespace std;
int gcd(int x, int y) {
    return y? gcd(y, x % y) : x;
}
int g[N], f[N], mu[N], n, m, k, prime[N], sz, vis[N];
ll G(int n) {
    return 1ll * (n / k) * g[k] + g[n % k];
} 
const int lim = 5000000;
void init(int n) {
    for(int i = 1; i <= k; i ++) g[i] = g[i - 1] + (gcd(i, k) == 1);
    f[1] = mu[1] = 1;
    for(int i = 2; i <= n; i ++) {
        if(!vis[i]) {
            prime[++ sz] = i;
            mu[i] = -1;
        }
        for(int j = 1; j <= sz && i * prime[j] <= n; j ++) {
            vis[i * prime[j]] = 1;
            if(i % prime[j] == 0) break;
            mu[i * prime[j]] = - mu[i];
        }
        f[i] = f[i - 1] + mu[i] * (G(i) - G(i - 1));
    }
}
map<int, ll> sf;
ll F(int n) {
    if(n <= lim) return f[n];
    if(sf[n]) return sf[n];
    ll ret = 1;
    for(int l = 2, r = 0; l <= n; l = r + 1) {
        r = n / (n / l);
        ret -= F(n / l) * (G(r) - G(l - 1)); 
    } return sf[n] = ret;
}
int main() {
    scanf("%d%d%d", &n, &m, &k);
    init(lim);
    ll ans = 0;
    for(int l = 1, r = 0; l <= min(n, m); l = r + 1) {
        r = min(n / (n / l), m / (m / l));
        ans += 1ll * (n / l) * G(m / l) * (F(r) - F(l - 1));
    }
    printf("%lld", ans);
    return 0;
}
上一篇:【Leetcode】295. 数据流的中位数


下一篇:零基础java自学流程-Java语言高级295