Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题

输出结果

Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题




实现代码


%单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题,matlab代码注解详细,能很好地帮助理解算法过程。

clc;

clear all;

img_name='jiedao.jpg';

% 原始图像

I=double(imread(img_name))/255;

% 获取图像大小

[h,w,c]=size(I);

win_size = 7;

img_size=w*h;

figure, imshow(I);

win_dark=ones(h,w);

%计算分块darkchannel

for j=1+win_size:w-win_size

   for i=win_size+1:h-win_size

       m_pos_min = min(I(i,j,:));

       for n=j-win_size:j+win_size

           for m=i-win_size:i+win_size

               if(win_dark(m,n)>m_pos_min)

                   win_dark(m,n)=m_pos_min;

               end

           end

       end

   end

end

%选定精确dark value坐标

% win_b = zeros(img_size,1);

figure, imshow(win_dark);

win_t=1-0.95*win_dark;

win_b=zeros(img_size,1);

for ci=1:h

   for cj=1:w

       if(rem(ci-8,15)<1)

           if(rem(cj-8,15)<1)

               win_b(ci*w+cj)=win_t(ci*w+cj);

           end

       end

   end

end

%显示分块darkchannel

%figure, imshow(win_dark);

neb_size = 9;

win_size = 1;

epsilon = 0.000001;

%指定矩阵形状

indsM=reshape(1:img_size,h,w);



 %创建稀疏矩阵

 D=spdiags(win_b(:),0,img_size,img_size);

 lambda=1;

 x=(A+lambda*D)\(lambda*(win_b(:).*win_b(:)));

  %去掉0-1范围以外的数

 alpha=max(min(reshape(x,h,w),1),0);

figure, imshow(alpha);

% **************************************************

%     自动获取大气光步骤,A为最终大气光的值

% **************************************************

range=ceil(img_size*0.1);%取暗原色中最亮的%1的点数

radi_pro=zeros(range,1); %用于记录最亮点内对应图片点象素的三个通道的颜色强度

     for s=1:range

         [a,b]=max(win_dark);  

         [c,d]=max(a);

         b=b(d);

         m=sparse(b,d,1,h,w);        %b,d为最亮值的坐标

         win_dark=win_dark-c.*m;     %消去选出的最大值

         radi_pro(s)=sum(I(b,d,:));  %最大值对应象素三通道求和

     end

A=max(radi_pro)/3;%大气光的值

% **************************************************

%  算法改进步骤,可修正天空透射率以减小明亮部分的失真率

% **************************************************

inten=zeros(h,w);

   for m=1:h

       for n=1:w

           inten(m,n)=mean(I(m,n,:));

       end

   end

k=70;    

k=zeros(h,w)+k/255; %容差

% A=220/255;

cha=abs(inten-A);   %差限

alpha=min(max(k./cha,1).*max(alpha,0.1),1); %算法改进关键部分

figure,imshow(alpha);

% ***************************************************

alpha=repmat(alpha,[1,1,3]);  

dehaze=(I-A)./alpha+A;  

figure, imshow(dehaze);

 


上一篇:MIT 分散规划算法有望使无人机结伴飞翔


下一篇:如何让Pl/Sql查出的某个值可编辑?