2021SC@SDUSC
FreeMarker代码分析第十四篇
beans包
OverloadedNumberUtil.java
代码分析
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package freemarker.ext.beans;
import java.math.BigDecimal;
import java.math.BigInteger;
import freemarker.template.TemplateNumberModel;
import freemarker.template.utility.ClassUtil;
import freemarker.template.utility.NumberUtil;
/**
* Everything related to coercion to ambiguous numerical types.
*/
class OverloadedNumberUtil {
// Can't be instantiated
private OverloadedNumberUtil() { }
/**
* The lower limit of conversion prices where there's a risk of significant mantissa loss.
* The value comes from misc/overloadedNumberRules/prices.ods and generator.ftl.
*/
static final int BIG_MANTISSA_LOSS_PRICE = 4 * 10000;
/** The highest long that can be stored in double without precision loss: 2**53. */
private static final long MAX_DOUBLE_OR_LONG = 9007199254740992L;
/** The lowest long that can be stored in double without precision loss: -(2**53). */
private static final long MIN_DOUBLE_OR_LONG = -9007199254740992L;
private static final int MAX_DOUBLE_OR_LONG_LOG_2 = 53;
/** The highest long that can be stored in float without precision loss: 2**24. */
private static final int MAX_FLOAT_OR_INT = 16777216;
/** The lowest long that can be stored in float without precision loss: -(2**24). */
private static final int MIN_FLOAT_OR_INT = -16777216;
private static final int MAX_FLOAT_OR_INT_LOG_2 = 24;
/** Lowest number that we don't thread as possible integer 0. */
private static final double LOWEST_ABOVE_ZERO = 0.000001;
/** Highest number that we don't thread as possible integer 1. */
private static final double HIGHEST_BELOW_ONE = 0.999999;
/**
* Attaches the lowest alternative number type to the parameter number via {@link NumberWithFallbackType}, if
* that's useful according the possible target number types. This transformation is applied on the method call
* argument list before overloaded method selection.
*
* <p>Note that as of this writing, this method is only used when
* {@link BeansWrapper#getIncompatibleImprovements()} >= 2.3.21.
*
* <p>Why's this needed, how it works: Overloaded method selection only selects methods where the <em>type</em>
* (not the value!) of the argument is "smaller" or the same as the parameter type. This is similar to how it's in
* the Java language. That it only decides based on the parameter type is important because this way
* {@link OverloadedMethodsSubset} can cache method lookup decisions using the types as the cache key. Problem is,
* since you don't declare the exact numerical types in FTL, and FTL has only a single generic numeric type
* anyway, what Java type a {@link TemplateNumberModel} uses internally is often seen as a technical detail of which
* the template author can't always keep track of. So we investigate the <em>value</em> of the number too,
* then coerce it down without overflow to a type that will match the most overloaded methods. (This
* is especially important as FTL often stores numbers in {@link BigDecimal}-s, which will hardly ever match any
* method parameters.) We could simply return that number, like {@code Byte(0)} for an {@code Integer(0)},
* however, then we would lose the information about what the original type was. The original type is sometimes
* important, as in ambiguous situations the method where there's an exact type match should be selected (like,
* when someone wants to select an overload explicitly with {@code m(x?int)}). Also, if an overload wins where
* the parameter type at the position of the number is {@code Number} or {@code Object} (or {@code Comparable}
* etc.), it's expected that we pass in the original value (an {@code Integer} in this example), especially if that
* value is the return value of another Java method. That's why we use
* {@link NumberWithFallbackType} numerical classes like {@link IntegerOrByte}, which represents both the original
* type and the coerced type, all encoded into the class of the value, which is used as the overloaded method lookup
* cache key.
*
* <p>See also: <tt>src\main\misc\overloadedNumberRules\prices.ods</tt>.
*
* @param num the number to coerce
* @param typeFlags the type flags of the target parameter position; see {@link TypeFlags}
*
* @return The original number or a {@link NumberWithFallbackType}, depending on the actual value and the types
* indicated in the {@code targetNumTypes} parameter.
*/
static Number addFallbackType(final Number num, final int typeFlags) {
final Class numClass = num.getClass();
if (numClass == BigDecimal.class) {
// For now we only support the backward-compatible mode that doesn't prevent roll overs and magnitude loss.
// However, we push the overloaded selection to the right direction, so we will at least indicate if the
// number has decimals.
BigDecimal n = (BigDecimal) num;
if ((typeFlags & TypeFlags.MASK_KNOWN_INTEGERS) != 0
&& (typeFlags & TypeFlags.MASK_KNOWN_NONINTEGERS) != 0
&& NumberUtil.isIntegerBigDecimal(n) /* <- can be expensive */) {
return new IntegerBigDecimal(n);
} else {
// Either it was a non-integer, or it didn't mater what it was, as we don't have both integer and
// non-integer target types.
return n;
}
} else if (numClass == Integer.class) {
int pn = num.intValue();
// Note that we try to return the most specific type (i.e., the numerical type with the smallest range), but
// only among the types that are possible targets. Like if the only target is int and the value is 1, we
// will return Integer 1, not Byte 1, even though byte is automatically converted to int so it would
// work too. Why we avoid unnecessarily specific types is that they generate more overloaded method lookup
// cache entries, since the cache key is the array of the types of the argument values. So we want as few
// permutations as possible.
if ((typeFlags & TypeFlags.BYTE) != 0 && pn <= Byte.MAX_VALUE && pn >= Byte.MIN_VALUE) {
return new IntegerOrByte((Integer) num, (byte) pn);
} else if ((typeFlags & TypeFlags.SHORT) != 0 && pn <= Short.MAX_VALUE && pn >= Short.MIN_VALUE) {
return new IntegerOrShort((Integer) num, (short) pn);
} else {
return num;
}
} else if (numClass == Long.class) {
final long pn = num.longValue();
if ((typeFlags & TypeFlags.BYTE) != 0 && pn <= Byte.MAX_VALUE && pn >= Byte.MIN_VALUE) {
return new LongOrByte((Long) num, (byte) pn);
} else if ((typeFlags & TypeFlags.SHORT) != 0 && pn <= Short.MAX_VALUE && pn >= Short.MIN_VALUE) {
return new LongOrShort((Long) num, (short) pn);
} else if ((typeFlags & TypeFlags.INTEGER) != 0 && pn <= Integer.MAX_VALUE && pn >= Integer.MIN_VALUE) {
return new LongOrInteger((Long) num, (int) pn);
} else {
return num;
}
} else if (numClass == Double.class) {
final double doubleN = num.doubleValue();
// Can we store it in an integer type?
checkIfWholeNumber: do {
if ((typeFlags & TypeFlags.MASK_KNOWN_INTEGERS) == 0) break checkIfWholeNumber;
// There's no hope to be 1-precise outside this region. (Although problems can occur even inside it...)
if (doubleN > MAX_DOUBLE_OR_LONG || doubleN < MIN_DOUBLE_OR_LONG) break checkIfWholeNumber;
long longN = num.longValue();
double diff = doubleN - longN;
boolean exact; // We will try to ignore precision glitches (like 0.3 - 0.2 - 0.1 = -2.7E-17)
if (diff == 0) {
exact = true;
} else if (diff > 0) {
if (diff < LOWEST_ABOVE_ZERO) {
exact = false;
} else if (diff > HIGHEST_BELOW_ONE) {
exact = false;
longN++;
} else {
break checkIfWholeNumber;
}
} else { // => diff < 0
if (diff > -LOWEST_ABOVE_ZERO) {
exact = false;
} else if (diff < -HIGHEST_BELOW_ONE) {
exact = false;
longN--;
} else {
break checkIfWholeNumber;
}
}
// If we reach this, it can be treated as a whole number.
if ((typeFlags & TypeFlags.BYTE) != 0
&& longN <= Byte.MAX_VALUE && longN >= Byte.MIN_VALUE) {
return new DoubleOrByte((Double) num, (byte) longN);
} else if ((typeFlags & TypeFlags.SHORT) != 0
&& longN <= Short.MAX_VALUE && longN >= Short.MIN_VALUE) {
return new DoubleOrShort((Double) num, (short) longN);
} else if ((typeFlags & TypeFlags.INTEGER) != 0
&& longN <= Integer.MAX_VALUE && longN >= Integer.MIN_VALUE) {
final int intN = (int) longN;
return (typeFlags & TypeFlags.FLOAT) != 0 && intN >= MIN_FLOAT_OR_INT && intN <= MAX_FLOAT_OR_INT
? new DoubleOrIntegerOrFloat((Double) num, intN)
: new DoubleOrInteger((Double) num, intN);
} else if ((typeFlags & TypeFlags.LONG) != 0) {
if (exact) {
return new DoubleOrLong((Double) num, longN);
} else {
// We don't deal with non-exact numbers outside the range of int, as we already reach
// ULP 2.384185791015625E-7 there.
if (longN >= Integer.MIN_VALUE && longN <= Integer.MAX_VALUE) {
return new DoubleOrLong((Double) num, longN);
} else {
break checkIfWholeNumber;
}
}
}
// This point is reached if the double value was out of the range of target integer type(s).
// Falls through!
} while (false);
// If we reach this that means that it can't be treated as a whole number.
if ((typeFlags & TypeFlags.FLOAT) != 0 && doubleN >= -Float.MAX_VALUE && doubleN <= Float.MAX_VALUE) {
return new DoubleOrFloat((Double) num);
} else {
// Simply Double:
return num;
}
} else if (numClass == Float.class) {
final float floatN = num.floatValue();
// Can we store it in an integer type?
checkIfWholeNumber: do {
if ((typeFlags & TypeFlags.MASK_KNOWN_INTEGERS) == 0) break checkIfWholeNumber;
// There's no hope to be 1-precise outside this region. (Although problems can occur even inside it...)
if (floatN > MAX_FLOAT_OR_INT || floatN < MIN_FLOAT_OR_INT) break checkIfWholeNumber;
int intN = num.intValue();
double diff = floatN - intN;
boolean exact; // We will try to ignore precision glitches (like 0.3 - 0.2 - 0.1 = -2.7E-17)
if (diff == 0) {
exact = true;
// We already reach ULP 7.6293945E-6 with bytes, so we don't continue with shorts.
} else if (intN >= Byte.MIN_VALUE && intN <= Byte.MAX_VALUE) {
if (diff > 0) {
if (diff < 0.00001) {
exact = false;
} else if (diff > 0.99999) {
exact = false;
intN++;
} else {
break checkIfWholeNumber;
}
} else { // => diff < 0
if (diff > -0.00001) {
exact = false;
} else if (diff < -0.99999) {
exact = false;
intN--;
} else {
break checkIfWholeNumber;
}
}
} else {
break checkIfWholeNumber;
}
// If we reach this, it can be treated as a whole number.
if ((typeFlags & TypeFlags.BYTE) != 0 && intN <= Byte.MAX_VALUE && intN >= Byte.MIN_VALUE) {
return new FloatOrByte((Float) num, (byte) intN);
} else if ((typeFlags & TypeFlags.SHORT) != 0 && intN <= Short.MAX_VALUE && intN >= Short.MIN_VALUE) {
return new FloatOrShort((Float) num, (short) intN);
} else if ((typeFlags & TypeFlags.INTEGER) != 0) {
return new FloatOrInteger((Float) num, intN);
} else if ((typeFlags & TypeFlags.LONG) != 0) {
// We can't even go outside the range of integers, so we don't need Long variation:
return exact
? new FloatOrInteger((Float) num, intN)
: new FloatOrByte((Float) num, (byte) intN); // as !exact implies (-128..127)
}
// This point is reached if the float value was out of the range of target integer type(s).
// Falls through!
} while (false);
// If we reach this that means that it can't be treated as a whole number. So it's simply a Float:
return num;
} else if (numClass == Byte.class) {
return num;
} else if (numClass == Short.class) {
short pn = num.shortValue();
if ((typeFlags & TypeFlags.BYTE) != 0 && pn <= Byte.MAX_VALUE && pn >= Byte.MIN_VALUE) {
return new ShortOrByte((Short) num, (byte) pn);
} else {
return num;
}
} else if (numClass == BigInteger.class) {
if ((typeFlags
& ((TypeFlags.MASK_KNOWN_INTEGERS | TypeFlags.MASK_KNOWN_NONINTEGERS)
^ (TypeFlags.BIG_INTEGER | TypeFlags.BIG_DECIMAL))) != 0) {
BigInteger biNum = (BigInteger) num;
final int bitLength = biNum.bitLength(); // Doesn't include sign bit, so it's one less than expected
if ((typeFlags & TypeFlags.BYTE) != 0 && bitLength <= 7) {
return new BigIntegerOrByte(biNum);
} else if ((typeFlags & TypeFlags.SHORT) != 0 && bitLength <= 15) {
return new BigIntegerOrShort(biNum);
} else if ((typeFlags & TypeFlags.INTEGER) != 0 && bitLength <= 31) {
return new BigIntegerOrInteger(biNum);
} else if ((typeFlags & TypeFlags.LONG) != 0 && bitLength <= 63) {
return new BigIntegerOrLong(biNum);
} else if ((typeFlags & TypeFlags.FLOAT) != 0
&& (bitLength <= MAX_FLOAT_OR_INT_LOG_2
|| bitLength == MAX_FLOAT_OR_INT_LOG_2 + 1
&& biNum.getLowestSetBit() >= MAX_FLOAT_OR_INT_LOG_2)) {
return new BigIntegerOrFloat(biNum);
} else if ((typeFlags & TypeFlags.DOUBLE) != 0
&& (bitLength <= MAX_DOUBLE_OR_LONG_LOG_2
|| bitLength == MAX_DOUBLE_OR_LONG_LOG_2 + 1
&& biNum.getLowestSetBit() >= MAX_DOUBLE_OR_LONG_LOG_2)) {
return new BigIntegerOrDouble(biNum);
} else {
return num;
}
} else {
// No relevant coercion target types; return the BigInteger as is:
return num;
}
} else {
// Unknown number type:
return num;
}
}
static interface ByteSource { Byte byteValue(); }
static interface ShortSource { Short shortValue(); }
static interface IntegerSource { Integer integerValue(); }
static interface LongSource { Long longValue(); }
static interface FloatSource { Float floatValue(); }
static interface DoubleSource { Double doubleValue(); }
static interface BigIntegerSource { BigInteger bigIntegerValue(); }
static interface BigDecimalSource { BigDecimal bigDecimalValue(); }
/**
* Superclass of "Or"-ed numerical types. With an example, a {@code int} 1 has the fallback type {@code byte}, as
* that's the smallest type that can store the value, so it can be represented as an {@link IntegerOrByte}.
* This is useful as overloaded method selection only examines the type of the arguments, not the value of them,
* but with "Or"-ed types we can encode this value-related information into the argument type, hence influencing the
* method selection.
*/
abstract static class NumberWithFallbackType extends Number implements Comparable {
protected abstract Number getSourceNumber();
@Override
public int intValue() {
return getSourceNumber().intValue();
}
@Override
public long longValue() {
return getSourceNumber().longValue();
}
@Override
public float floatValue() {
return getSourceNumber().floatValue();
}
@Override
public double doubleValue() {
return getSourceNumber().doubleValue();
}
@Override
public byte byteValue() {
return getSourceNumber().byteValue();
}
@Override
public short shortValue() {
return getSourceNumber().shortValue();
}
@Override
public int hashCode() {
return getSourceNumber().hashCode();
}
@Override
public boolean equals(Object obj) {
if (obj != null && this.getClass() == obj.getClass()) {
return getSourceNumber().equals(((NumberWithFallbackType) obj).getSourceNumber());
} else {
return false;
}
}
@Override
public String toString() {
return getSourceNumber().toString();
}
// We have to implement this, so that if a potential matching method expects a Comparable, which is implemented
// by all the supported numerical types, the "Or" type will be a match.
@Override
public int compareTo(Object o) {
Number n = getSourceNumber();
if (n instanceof Comparable) {
return ((Comparable) n).compareTo(o);
} else {
throw new ClassCastException(n.getClass().getName() + " is not Comparable.");
}
}
}
/**
* Holds a {@link BigDecimal} that stores a whole number. When selecting a overloaded method, FreeMarker tries to
* associate {@link BigDecimal} values to parameters of types that can hold non-whole numbers, unless the
* {@link BigDecimal} is wrapped into this class, in which case it does the opposite. This mechanism is, however,
* too rough to prevent roll overs or magnitude losses. Those are not yet handled for backward compatibility (they
* were suppressed earlier too).
*/
static final class IntegerBigDecimal extends NumberWithFallbackType {
private final BigDecimal n;
IntegerBigDecimal(BigDecimal n) {
this.n = n;
}
@Override
protected Number getSourceNumber() {
return n;
}
public BigInteger bigIntegerValue() {
return n.toBigInteger();
}
}
static abstract class LongOrSmallerInteger extends NumberWithFallbackType {
private final Long n;
protected LongOrSmallerInteger(Long n) {
this.n = n;
}
@Override
protected Number getSourceNumber() {
return n;
}
@Override
public long longValue() {
return n.longValue();
}
}
static class LongOrByte extends LongOrSmallerInteger {
private final byte w;
LongOrByte(Long n, byte w) {
super(n);
this.w = w;
}
@Override
public byte byteValue() {
return w;
}
}
static class LongOrShort extends LongOrSmallerInteger {
private final short w;
LongOrShort(Long n, short w) {
super(n);
this.w = w;
}
@Override
public short shortValue() {
return w;
}
}
static class LongOrInteger extends LongOrSmallerInteger {
private final int w;
LongOrInteger(Long n, int w) {
super(n);
this.w = w;
}
@Override
public int intValue() {
return w;
}
}
static abstract class IntegerOrSmallerInteger extends NumberWithFallbackType {
private final Integer n;
protected IntegerOrSmallerInteger(Integer n) {
this.n = n;
}
@Override
protected Number getSourceNumber() {
return n;
}
@Override
public int intValue() {
return n.intValue();
}
}
static class IntegerOrByte extends IntegerOrSmallerInteger {
private final byte w;
IntegerOrByte(Integer n, byte w) {
super(n);
this.w = w;
}
@Override
public byte byteValue() {
return w;
}
}
static class IntegerOrShort extends IntegerOrSmallerInteger {
private final short w;
IntegerOrShort(Integer n, short w) {
super(n);
this.w = w;
}
@Override
public short shortValue() {
return w;
}
}
static class ShortOrByte extends NumberWithFallbackType {
private final Short n;
private final byte w;
protected ShortOrByte(Short n, byte w) {
this.n = n;
this.w = w;
}
@Override
protected Number getSourceNumber() {
return n;
}
@Override
public short shortValue() {
return n.shortValue();
}
@Override
public byte byteValue() {
return w;
}
}
static abstract class DoubleOrWholeNumber extends NumberWithFallbackType {
private final Double n;
protected DoubleOrWholeNumber(Double n) {
this.n = n;
}
@Override
protected Number getSourceNumber() {
return n;
}
@Override
public double doubleValue() {
return n.doubleValue();
}
}
static final class DoubleOrByte extends DoubleOrWholeNumber {
private final byte w;
DoubleOrByte(Double n, byte w) {
super(n);
this.w = w;
}
@Override
public byte byteValue() {
return w;
}
@Override
public short shortValue() {
return w;
}
@Override
public int intValue() {
return w;
}
@Override
public long longValue() {
return w;
}
}
static final class DoubleOrShort extends DoubleOrWholeNumber {
private final short w;
DoubleOrShort(Double n, short w) {
super(n);
this.w = w;
}
@Override
public short shortValue() {
return w;
}
@Override
public int intValue() {
return w;
}
@Override
public long longValue() {
return w;
}
}
static final class DoubleOrIntegerOrFloat extends DoubleOrWholeNumber {
private final int w;
DoubleOrIntegerOrFloat(Double n, int w) {
super(n);
this.w = w;
}
@Override
public int intValue() {
return w;
}
@Override
public long longValue() {
return w;
}
}
static final class DoubleOrInteger extends DoubleOrWholeNumber {
private final int w;
DoubleOrInteger(Double n, int w) {
super(n);
this.w = w;
}
@Override
public int intValue() {
return w;
}
@Override
public long longValue() {
return w;
}
}
static final class DoubleOrLong extends DoubleOrWholeNumber {
private final long w;
DoubleOrLong(Double n, long w) {
super(n);
this.w = w;
}
@Override
public long longValue() {
return w;
}
}
static final class DoubleOrFloat extends NumberWithFallbackType {
private final Double n;
DoubleOrFloat(Double n) {
this.n = n;
}
@Override
public float floatValue() {
return n.floatValue();
}
@Override
public double doubleValue() {
return n.doubleValue();
}
@Override
protected Number getSourceNumber() {
return n;
}
}
static abstract class FloatOrWholeNumber extends NumberWithFallbackType {
private final Float n;
FloatOrWholeNumber(Float n) {
this.n = n;
}
@Override
protected Number getSourceNumber() {
return n;
}
@Override
public float floatValue() {
return n.floatValue();
}
}
static final class FloatOrByte extends FloatOrWholeNumber {
private final byte w;
FloatOrByte(Float n, byte w) {
super(n);
this.w = w;
}
@Override
public byte byteValue() {
return w;
}
@Override
public short shortValue() {
return w;
}
@Override
public int intValue() {
return w;
}
@Override
public long longValue() {
return w;
}
}
static final class FloatOrShort extends FloatOrWholeNumber {
private final short w;
FloatOrShort(Float n, short w) {
super(n);
this.w = w;
}
@Override
public short shortValue() {
return w;
}
@Override
public int intValue() {
return w;
}
@Override
public long longValue() {
return w;
}
}
static final class FloatOrInteger extends FloatOrWholeNumber {
private final int w;
FloatOrInteger(Float n, int w) {
super(n);
this.w = w;
}
@Override
public int intValue() {
return w;
}
@Override
public long longValue() {
return w;
}
}
abstract static class BigIntegerOrPrimitive extends NumberWithFallbackType {
protected final BigInteger n;
BigIntegerOrPrimitive(BigInteger n) {
this.n = n;
}
@Override
protected Number getSourceNumber() {
return n;
}
}
final static class BigIntegerOrByte extends BigIntegerOrPrimitive {
BigIntegerOrByte(BigInteger n) {
super(n);
}
}
final static class BigIntegerOrShort extends BigIntegerOrPrimitive {
BigIntegerOrShort(BigInteger n) {
super(n);
}
}
final static class BigIntegerOrInteger extends BigIntegerOrPrimitive {
BigIntegerOrInteger(BigInteger n) {
super(n);
}
}
final static class BigIntegerOrLong extends BigIntegerOrPrimitive {
BigIntegerOrLong(BigInteger n) {
super(n);
}
}
abstract static class BigIntegerOrFPPrimitive extends BigIntegerOrPrimitive {
BigIntegerOrFPPrimitive(BigInteger n) {
super(n);
}
/** Faster version of {@link BigDecimal#floatValue()}, utilizes that the number known to fit into a long. */
@Override
public float floatValue() {
return n.longValue();
}
/** Faster version of {@link BigDecimal#doubleValue()}, utilizes that the number known to fit into a long. */
@Override
public double doubleValue() {
return n.longValue();
}
}
final static class BigIntegerOrFloat extends BigIntegerOrFPPrimitive {
BigIntegerOrFloat(BigInteger n) {
super(n);
}
}
final static class BigIntegerOrDouble extends BigIntegerOrFPPrimitive {
BigIntegerOrDouble(BigInteger n) {
super(n);
}
}
/**
* Returns a non-negative number that indicates how much we want to avoid a given numerical type conversion. Since
* we only consider the types here, not the actual value, we always consider the worst case scenario. Like it will
* say that converting int to short is not allowed, although int 1 can be converted to byte without loss. To account
* for such situations, "Or"-ed types, like {@link IntegerOrByte} has to be used.
*
* @param fromC the non-primitive type of the argument (with other words, the actual type).
* Must be {@link Number} or its subclass. This is possibly an {@link NumberWithFallbackType} subclass.
* @param toC the <em>non-primitive</em> type of the target parameter (with other words, the format type).
* Must be a {@link Number} subclass, not {@link Number} itself.
* Must <em>not</em> be {@link NumberWithFallbackType} or its subclass.
*
* @return
* <p>The possible values are:
* <ul>
* <li>0: No conversion is needed
* <li>[0, 30000): Lossless conversion
* <li>[30000, 40000): Smaller precision loss in mantissa is possible.
* <li>[40000, 50000): Bigger precision loss in mantissa is possible.
* <li>{@link Integer#MAX_VALUE}: Conversion not allowed due to the possibility of magnitude loss or
* overflow</li>
* </ul>
*
* <p>At some places, we only care if the conversion is possible, i.e., whether the return value is
* {@link Integer#MAX_VALUE} or not. But when multiple overloaded methods have an argument type to which we
* could convert to, this number will influence which of those will be chosen.
*/
static int getArgumentConversionPrice(Class fromC, Class toC) {
// DO NOT EDIT, generated code!
// See: src\main\misc\overloadedNumberRules\README.txt
if (toC == fromC) {
return 0;
} else if (toC == Integer.class) {
if (fromC == IntegerBigDecimal.class) return 31003;
else if (fromC == BigDecimal.class) return 41003;
else if (fromC == Long.class) return Integer.MAX_VALUE;
else if (fromC == Double.class) return Integer.MAX_VALUE;
else if (fromC == Float.class) return Integer.MAX_VALUE;
else if (fromC == Byte.class) return 10003;
else if (fromC == BigInteger.class) return Integer.MAX_VALUE;
else if (fromC == LongOrInteger.class) return 21003;
else if (fromC == DoubleOrFloat.class) return Integer.MAX_VALUE;
else if (fromC == DoubleOrIntegerOrFloat.class) return 22003;
else if (fromC == DoubleOrInteger.class) return 22003;
else if (fromC == DoubleOrLong.class) return Integer.MAX_VALUE;
else if (fromC == IntegerOrByte.class) return 0;
else if (fromC == DoubleOrByte.class) return 22003;
else if (fromC == LongOrByte.class) return 21003;
else if (fromC == Short.class) return 10003;
else if (fromC == LongOrShort.class) return 21003;
else if (fromC == ShortOrByte.class) return 10003;
else if (fromC == FloatOrInteger.class) return 21003;
else if (fromC == FloatOrByte.class) return 21003;
else if (fromC == FloatOrShort.class) return 21003;
else if (fromC == BigIntegerOrInteger.class) return 16003;
else if (fromC == BigIntegerOrLong.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrDouble.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrFloat.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrByte.class) return 16003;
else if (fromC == IntegerOrShort.class) return 0;
else if (fromC == DoubleOrShort.class) return 22003;
else if (fromC == BigIntegerOrShort.class) return 16003;
else return Integer.MAX_VALUE;
} else if (toC == Long.class) {
if (fromC == Integer.class) return 10004;
else if (fromC == IntegerBigDecimal.class) return 31004;
else if (fromC == BigDecimal.class) return 41004;
else if (fromC == Double.class) return Integer.MAX_VALUE;
else if (fromC == Float.class) return Integer.MAX_VALUE;
else if (fromC == Byte.class) return 10004;
else if (fromC == BigInteger.class) return Integer.MAX_VALUE;
else if (fromC == LongOrInteger.class) return 0;
else if (fromC == DoubleOrFloat.class) return Integer.MAX_VALUE;
else if (fromC == DoubleOrIntegerOrFloat.class) return 21004;
else if (fromC == DoubleOrInteger.class) return 21004;
else if (fromC == DoubleOrLong.class) return 21004;
else if (fromC == IntegerOrByte.class) return 10004;
else if (fromC == DoubleOrByte.class) return 21004;
else if (fromC == LongOrByte.class) return 0;
else if (fromC == Short.class) return 10004;
else if (fromC == LongOrShort.class) return 0;
else if (fromC == ShortOrByte.class) return 10004;
else if (fromC == FloatOrInteger.class) return 21004;
else if (fromC == FloatOrByte.class) return 21004;
else if (fromC == FloatOrShort.class) return 21004;
else if (fromC == BigIntegerOrInteger.class) return 15004;
else if (fromC == BigIntegerOrLong.class) return 15004;
else if (fromC == BigIntegerOrDouble.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrFloat.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrByte.class) return 15004;
else if (fromC == IntegerOrShort.class) return 10004;
else if (fromC == DoubleOrShort.class) return 21004;
else if (fromC == BigIntegerOrShort.class) return 15004;
else return Integer.MAX_VALUE;
} else if (toC == Double.class) {
if (fromC == Integer.class) return 20007;
else if (fromC == IntegerBigDecimal.class) return 32007;
else if (fromC == BigDecimal.class) return 32007;
else if (fromC == Long.class) return 30007;
else if (fromC == Float.class) return 10007;
else if (fromC == Byte.class) return 20007;
else if (fromC == BigInteger.class) return Integer.MAX_VALUE;
else if (fromC == LongOrInteger.class) return 21007;
else if (fromC == DoubleOrFloat.class) return 0;
else if (fromC == DoubleOrIntegerOrFloat.class) return 0;
else if (fromC == DoubleOrInteger.class) return 0;
else if (fromC == DoubleOrLong.class) return 0;
else if (fromC == IntegerOrByte.class) return 20007;
else if (fromC == DoubleOrByte.class) return 0;
else if (fromC == LongOrByte.class) return 21007;
else if (fromC == Short.class) return 20007;
else if (fromC == LongOrShort.class) return 21007;
else if (fromC == ShortOrByte.class) return 20007;
else if (fromC == FloatOrInteger.class) return 10007;
else if (fromC == FloatOrByte.class) return 10007;
else if (fromC == FloatOrShort.class) return 10007;
else if (fromC == BigIntegerOrInteger.class) return 20007;
else if (fromC == BigIntegerOrLong.class) return 30007;
else if (fromC == BigIntegerOrDouble.class) return 20007;
else if (fromC == BigIntegerOrFloat.class) return 20007;
else if (fromC == BigIntegerOrByte.class) return 20007;
else if (fromC == IntegerOrShort.class) return 20007;
else if (fromC == DoubleOrShort.class) return 0;
else if (fromC == BigIntegerOrShort.class) return 20007;
else return Integer.MAX_VALUE;
} else if (toC == Float.class) {
if (fromC == Integer.class) return 30006;
else if (fromC == IntegerBigDecimal.class) return 33006;
else if (fromC == BigDecimal.class) return 33006;
else if (fromC == Long.class) return 40006;
else if (fromC == Double.class) return Integer.MAX_VALUE;
else if (fromC == Byte.class) return 20006;
else if (fromC == BigInteger.class) return Integer.MAX_VALUE;
else if (fromC == LongOrInteger.class) return 30006;
else if (fromC == DoubleOrFloat.class) return 30006;
else if (fromC == DoubleOrIntegerOrFloat.class) return 23006;
else if (fromC == DoubleOrInteger.class) return 30006;
else if (fromC == DoubleOrLong.class) return 40006;
else if (fromC == IntegerOrByte.class) return 24006;
else if (fromC == DoubleOrByte.class) return 23006;
else if (fromC == LongOrByte.class) return 24006;
else if (fromC == Short.class) return 20006;
else if (fromC == LongOrShort.class) return 24006;
else if (fromC == ShortOrByte.class) return 20006;
else if (fromC == FloatOrInteger.class) return 0;
else if (fromC == FloatOrByte.class) return 0;
else if (fromC == FloatOrShort.class) return 0;
else if (fromC == BigIntegerOrInteger.class) return 30006;
else if (fromC == BigIntegerOrLong.class) return 40006;
else if (fromC == BigIntegerOrDouble.class) return 40006;
else if (fromC == BigIntegerOrFloat.class) return 24006;
else if (fromC == BigIntegerOrByte.class) return 24006;
else if (fromC == IntegerOrShort.class) return 24006;
else if (fromC == DoubleOrShort.class) return 23006;
else if (fromC == BigIntegerOrShort.class) return 24006;
else return Integer.MAX_VALUE;
} else if (toC == Byte.class) {
if (fromC == Integer.class) return Integer.MAX_VALUE;
else if (fromC == IntegerBigDecimal.class) return 35001;
else if (fromC == BigDecimal.class) return 45001;
else if (fromC == Long.class) return Integer.MAX_VALUE;
else if (fromC == Double.class) return Integer.MAX_VALUE;
else if (fromC == Float.class) return Integer.MAX_VALUE;
else if (fromC == BigInteger.class) return Integer.MAX_VALUE;
else if (fromC == LongOrInteger.class) return Integer.MAX_VALUE;
else if (fromC == DoubleOrFloat.class) return Integer.MAX_VALUE;
else if (fromC == DoubleOrIntegerOrFloat.class) return Integer.MAX_VALUE;
else if (fromC == DoubleOrInteger.class) return Integer.MAX_VALUE;
else if (fromC == DoubleOrLong.class) return Integer.MAX_VALUE;
else if (fromC == IntegerOrByte.class) return 22001;
else if (fromC == DoubleOrByte.class) return 25001;
else if (fromC == LongOrByte.class) return 23001;
else if (fromC == Short.class) return Integer.MAX_VALUE;
else if (fromC == LongOrShort.class) return Integer.MAX_VALUE;
else if (fromC == ShortOrByte.class) return 21001;
else if (fromC == FloatOrInteger.class) return Integer.MAX_VALUE;
else if (fromC == FloatOrByte.class) return 23001;
else if (fromC == FloatOrShort.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrInteger.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrLong.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrDouble.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrFloat.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrByte.class) return 18001;
else if (fromC == IntegerOrShort.class) return Integer.MAX_VALUE;
else if (fromC == DoubleOrShort.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrShort.class) return Integer.MAX_VALUE;
else return Integer.MAX_VALUE;
} else if (toC == Short.class) {
if (fromC == Integer.class) return Integer.MAX_VALUE;
else if (fromC == IntegerBigDecimal.class) return 34002;
else if (fromC == BigDecimal.class) return 44002;
else if (fromC == Long.class) return Integer.MAX_VALUE;
else if (fromC == Double.class) return Integer.MAX_VALUE;
else if (fromC == Float.class) return Integer.MAX_VALUE;
else if (fromC == Byte.class) return 10002;
else if (fromC == BigInteger.class) return Integer.MAX_VALUE;
else if (fromC == LongOrInteger.class) return Integer.MAX_VALUE;
else if (fromC == DoubleOrFloat.class) return Integer.MAX_VALUE;
else if (fromC == DoubleOrIntegerOrFloat.class) return Integer.MAX_VALUE;
else if (fromC == DoubleOrInteger.class) return Integer.MAX_VALUE;
else if (fromC == DoubleOrLong.class) return Integer.MAX_VALUE;
else if (fromC == IntegerOrByte.class) return 21002;
else if (fromC == DoubleOrByte.class) return 24002;
else if (fromC == LongOrByte.class) return 22002;
else if (fromC == LongOrShort.class) return 22002;
else if (fromC == ShortOrByte.class) return 0;
else if (fromC == FloatOrInteger.class) return Integer.MAX_VALUE;
else if (fromC == FloatOrByte.class) return 22002;
else if (fromC == FloatOrShort.class) return 22002;
else if (fromC == BigIntegerOrInteger.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrLong.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrDouble.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrFloat.class) return Integer.MAX_VALUE;
else if (fromC == BigIntegerOrByte.class) return 17002;
else if (fromC == IntegerOrShort.class) return 21002;
else if (fromC == DoubleOrShort.class) return 24002;
else if (fromC == BigIntegerOrShort.class) return 17002;
else return Integer.MAX_VALUE;
} else if (toC == BigDecimal.class) {
if (fromC == Integer.class) return 20008;
else if (fromC == IntegerBigDecimal.class) return 0;
else if (fromC == Long.class) return 20008;
else if (fromC == Double.class) return 20008;
else if (fromC == Float.class) return 20008;
else if (fromC == Byte.class) return 20008;
else if (fromC == BigInteger.class) return 10008;
else if (fromC == LongOrInteger.class) return 20008;
else if (fromC == DoubleOrFloat.class) return 20008;
else if (fromC == DoubleOrIntegerOrFloat.class) return 20008;
else if (fromC == DoubleOrInteger.class) return 20008;
else if (fromC == DoubleOrLong.class) return 20008;
else if (fromC == IntegerOrByte.class) return 20008;
else if (fromC == DoubleOrByte.class) return 20008;
else if (fromC == LongOrByte.class) return 20008;
else if (fromC == Short.class) return 20008;
else if (fromC == LongOrShort.class) return 20008;
else if (fromC == ShortOrByte.class) return 20008;
else if (fromC == FloatOrInteger.class) return 20008;
else if (fromC == FloatOrByte.class) return 20008;
else if (fromC == FloatOrShort.class) return 20008;
else if (fromC == BigIntegerOrInteger.class) return 10008;
else if (fromC == BigIntegerOrLong.class) return 10008;
else if (fromC == BigIntegerOrDouble.class) return 10008;
else if (fromC == BigIntegerOrFloat.class) return 10008;
else if (fromC == BigIntegerOrByte.class) return 10008;
else if (fromC == IntegerOrShort.class) return 20008;
else if (fromC == DoubleOrShort.class) return 20008;
else if (fromC == BigIntegerOrShort.class) return 10008;
else return Integer.MAX_VALUE;
} else if (toC == BigInteger.class) {
if (fromC == Integer.class) return 10005;
else if (fromC == IntegerBigDecimal.class) return 10005;
else if (fromC == BigDecimal.class) return 40005;
else if (fromC == Long.class) return 10005;
else if (fromC == Double.class) return Integer.MAX_VALUE;
else if (fromC == Float.class) return Integer.MAX_VALUE;
else if (fromC == Byte.class) return 10005;
else if (fromC == LongOrInteger.class) return 10005;
else if (fromC == DoubleOrFloat.class) return Integer.MAX_VALUE;
else if (fromC == DoubleOrIntegerOrFloat.class) return 21005;
else if (fromC == DoubleOrInteger.class) return 21005;
else if (fromC == DoubleOrLong.class) return 21005;
else if (fromC == IntegerOrByte.class) return 10005;
else if (fromC == DoubleOrByte.class) return 21005;
else if (fromC == LongOrByte.class) return 10005;
else if (fromC == Short.class) return 10005;
else if (fromC == LongOrShort.class) return 10005;
else if (fromC == ShortOrByte.class) return 10005;
else if (fromC == FloatOrInteger.class) return 25005;
else if (fromC == FloatOrByte.class) return 25005;
else if (fromC == FloatOrShort.class) return 25005;
else if (fromC == BigIntegerOrInteger.class) return 0;
else if (fromC == BigIntegerOrLong.class) return 0;
else if (fromC == BigIntegerOrDouble.class) return 0;
else if (fromC == BigIntegerOrFloat.class) return 0;
else if (fromC == BigIntegerOrByte.class) return 0;
else if (fromC == IntegerOrShort.class) return 10005;
else if (fromC == DoubleOrShort.class) return 21005;
else if (fromC == BigIntegerOrShort.class) return 0;
else return Integer.MAX_VALUE;
} else {
// Unknown toC; we don't know how to convert to it:
return Integer.MAX_VALUE;
}
}
static int compareNumberTypeSpecificity(Class c1, Class c2) {
// DO NOT EDIT, generated code!
// See: src\main\misc\overloadedNumberRules\README.txt
c1 = ClassUtil.primitiveClassToBoxingClass(c1);
c2 = ClassUtil.primitiveClassToBoxingClass(c2);
if (c1 == c2) return 0;
if (c1 == Integer.class) {
if (c2 == Long.class) return 4 - 3;
if (c2 == Double.class) return 7 - 3;
if (c2 == Float.class) return 6 - 3;
if (c2 == Byte.class) return 1 - 3;
if (c2 == Short.class) return 2 - 3;
if (c2 == BigDecimal.class) return 8 - 3;
if (c2 == BigInteger.class) return 5 - 3;
return 0;
}
if (c1 == Long.class) {
if (c2 == Integer.class) return 3 - 4;
if (c2 == Double.class) return 7 - 4;
if (c2 == Float.class) return 6 - 4;
if (c2 == Byte.class) return 1 - 4;
if (c2 == Short.class) return 2 - 4;
if (c2 == BigDecimal.class) return 8 - 4;
if (c2 == BigInteger.class) return 5 - 4;
return 0;
}
if (c1 == Double.class) {
if (c2 == Integer.class) return 3 - 7;
if (c2 == Long.class) return 4 - 7;
if (c2 == Float.class) return 6 - 7;
if (c2 == Byte.class) return 1 - 7;
if (c2 == Short.class) return 2 - 7;
if (c2 == BigDecimal.class) return 8 - 7;
if (c2 == BigInteger.class) return 5 - 7;
return 0;
}
if (c1 == Float.class) {
if (c2 == Integer.class) return 3 - 6;
if (c2 == Long.class) return 4 - 6;
if (c2 == Double.class) return 7 - 6;
if (c2 == Byte.class) return 1 - 6;
if (c2 == Short.class) return 2 - 6;
if (c2 == BigDecimal.class) return 8 - 6;
if (c2 == BigInteger.class) return 5 - 6;
return 0;
}
if (c1 == Byte.class) {
if (c2 == Integer.class) return 3 - 1;
if (c2 == Long.class) return 4 - 1;
if (c2 == Double.class) return 7 - 1;
if (c2 == Float.class) return 6 - 1;
if (c2 == Short.class) return 2 - 1;
if (c2 == BigDecimal.class) return 8 - 1;
if (c2 == BigInteger.class) return 5 - 1;
return 0;
}
if (c1 == Short.class) {
if (c2 == Integer.class) return 3 - 2;
if (c2 == Long.class) return 4 - 2;
if (c2 == Double.class) return 7 - 2;
if (c2 == Float.class) return 6 - 2;
if (c2 == Byte.class) return 1 - 2;
if (c2 == BigDecimal.class) return 8 - 2;
if (c2 == BigInteger.class) return 5 - 2;
return 0;
}
if (c1 == BigDecimal.class) {
if (c2 == Integer.class) return 3 - 8;
if (c2 == Long.class) return 4 - 8;
if (c2 == Double.class) return 7 - 8;
if (c2 == Float.class) return 6 - 8;
if (c2 == Byte.class) return 1 - 8;
if (c2 == Short.class) return 2 - 8;
if (c2 == BigInteger.class) return 5 - 8;
return 0;
}
if (c1 == BigInteger.class) {
if (c2 == Integer.class) return 3 - 5;
if (c2 == Long.class) return 4 - 5;
if (c2 == Double.class) return 7 - 5;
if (c2 == Float.class) return 6 - 5;
if (c2 == Byte.class) return 1 - 5;
if (c2 == Short.class) return 2 - 5;
if (c2 == BigDecimal.class) return 8 - 5;
return 0;
}
return 0;
}
}