数据聚合
1、数据聚合
聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:
什么品牌的手机最受欢迎?
这些手机的平均价格、最高价格、最低价格?
这些手机每月的销售情况如何?
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
2、聚合的种类
聚合常见的有三类:
桶(Bucket)聚合:用来对文档做分组
TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
Avg:求平均值
Max:求最大值
Min:求最小值
Stats:同时求max、min、avg、sum等
管道(pipeline)聚合:其它聚合的结果为基础做聚合
注意:参加聚合的字段必须是keyword、日期、数值、布尔类型
3、DSL实现聚合
一、Bucket聚合语法
语法如下:
GET /hotel/_search { "size": 0, // 设置size为0,结果中不包含文档,只包含聚合结果 "aggs": { // 定义聚合 "brandAgg": { //给聚合起个名字 "terms": { // 聚合的类型,按照品牌值聚合,所以选择term "field": "brand", // 参与聚合的字段 "size": 20 // 希望获取的聚合结果数量 } } } }结果:
二、聚合排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为count,并且按照count降序排序。
我们可以指定order属性,自定义聚合的排序方式:
GET /hotel/_search { "size": 0, "aggs": { "brandAgg": { "terms": { "field": "brand", "order": { "_count": "asc" // 按照_count升序排列 }, "size": 20 } } } }三、限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。
我们可以限定要聚合的文档范围,只要添加query条件即可:
GET /hotel/_search { "query": { "range": { "price": { "lte": 200 // 只对200元以下的文档聚合 } } }, "size": 0, "aggs": { "brandAgg": { "terms": { "field": "brand", "size": 20 } } } }四、Metric聚合
GET /hotel/_search { "size": 0, "aggs": { "brandAgg": { "terms": { "field": "brand", "size": 20 }, "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算 "score_stats": { // 聚合名称 "stats": { // 聚合类型,这里stats可以计算min、max、avg等 "field": "score" // 聚合字段,这里是score } } } } } }结果:
4、总结
aggs代表聚合,与query同级,此时query的作用是?
限定聚合的的文档范围
聚合必须的三要素:
聚合名称
聚合类型
聚合字段
聚合可配置属性有:
size:指定聚合结果数量
order:指定聚合结果排序方式
field:指定聚合字段
4、RestAPI实现聚合
聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。
聚合条件的语法:
聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:
测试代码:
@Test public void terms() throws IOException { // 1 构建查询请求 SearchRequest request = new SearchRequest("hotel"); // 2 构造DSL request.source().size(0); request.source().aggregation(AggregationBuilders .terms("brandAggs") .field("brand") .size(10) ); // 3 发起查询,获取响应 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4 解析响应 Aggregations aggregations = response.getAggregations(); Terms terms = aggregations.get("brandAggs"); List<? extends Terms.Bucket> buckets = terms.getBuckets(); for (Terms.Bucket bucket : buckets) { System.out.println(bucket.getKeyAsString()+"-"+bucket.getDocCount()); } }
自动补全
1、拼音分词器
拼音分词器下载路径:https://www.aliyundrive.com/s/cQ8BsrS13nN
测试:
POST /_analyze { "text": "如家酒店还不错", "analyzer": "pinyin" }
2、自定义分词器
默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。
elasticsearch中分词器(analyzer)的组成包含三部分:
character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等
文档分词时会依次由这三部分来处理文档:
声明自定义分词器的语法如下:
PUT /test { "settings": { "analysis": { "analyzer": { // 自定义分词器 "my_analyzer": { // 分词器名称 "tokenizer": "ik_max_word", "filter": "py" } }, "filter": { // 自定义tokenizer filter "py": { // 过滤器名称 "type": "pinyin", // 过滤器类型,这里是pinyin "keep_full_pinyin": false, "keep_joined_full_pinyin": true, "keep_original": true, "limit_first_letter_length": 16, "remove_duplicated_term": true, "none_chinese_pinyin_tokenize": false } } } }, "mappings": { "properties": { "name": { "type": "text", "analyzer": "my_analyzer", "search_analyzer": "ik_smart" } } } }测试:
总结:
如何使用拼音分词器?
①下载pinyin分词器
②解压并放到elasticsearch的plugin目录
③重启即可
如何自定义分词器?
①创建索引库时,在settings中配置,可以包含三部分
②character filter
③tokenizer
④filter
拼音分词器注意事项?
为了避免搜索到同音字,搜索时不要使用拼音分词器
3、自动补全查询
elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:
参与补全查询的字段必须是completion类型。
字段的内容一般是用来补全的多个词条形成的数组。
比如,一个这样的索引库:
// 创建索引库 PUT test { "mappings": { "properties": { "title":{ "type": "completion" } } } }然后插入下面的数据:
// 示例数据 POST test/_doc { "title": ["Sony", "WH-1000XM3"] } POST test/_doc { "title": ["SK-II", "PITERA"] } POST test/_doc { "title": ["Nintendo", "switch"] }查询的DSL语句如下:
// 自动补全查询 GET /test/_search { "suggest": { "title_suggest": { "text": "s", // 关键字 "completion": { "field": "title", // 补全查询的字段 "skip_duplicates": true, // 跳过重复的 "size": 10 // 获取前10条结果 } } } }
4、自动补全的JavaAPI
之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:
而自动补全的结果也比较特殊,解析的代码如下:
数据同步