《TensorFlow深度学习应用实践》学习笔记1

第一章


计算机视觉的核心问题,如何忽略同一个物体内部的差异,而强化不同物体之间的区别。


人工神经网络。


反向传播算法。将复杂的链式法则拆解为独立的前后关系的连接层,按照各自的权重分配错误更新。这样通过已有的数据统计规律对未定位的事件做出预测。


2006年,深层神经网络的训练有了突破。使用更多隐层和更多神经元,有更好的学习能力。


CNN:仿照生物视觉的逐层分解算法。


训练平台,模型使用,速度和周期。


常用的TensorFlow/Cafe/PyTroch


核心是任务处理的对象,包括检测、识别、分割、特征点定位、序列学习。



第二章

Anoconda

上一篇:Android应用程序键盘(Keyboard)消息处理机制分析(3)


下一篇:PostgreSQL 全文检索加速 快到没有朋友 - RUM索引接口(潘多拉魔盒)