大数据data开发有哪些好的辅助工具?

作为一个程序员开发工具好比是人的手和脚,只有把这些开发工具用好,才能做好一个产品的需求。大多使用SQL数据库存储/检索数据,如今很多情况下,它都不再能满足我们的需求。下面小编就介绍一些大数据data开发常用的辅助工具。

开源企业搜索平台:Solr

用Java编写,来自Apache Lucene项目。Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口。用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。
大数据data开发有哪些好的辅助工具?

与ElasticSearch一样,同样是基于Lucene,但它对其进行了扩展,提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展并对查询性能进行了优化。

云构建的分布式RESTful搜索引擎:Elasticsearch

ElasticSearch是基于Lucene的搜索服务器。它提供了分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是比较流行的企业级搜索引擎。

ElasticSearch不仅是一个全文本搜索引擎,还是一个分布式实时文档存储,其中每个field均是被索引的数据且可被搜索;也是一个带实时分析功能的分布式搜索引擎,并且能够扩展至数以百计的服务器存储及处理PB级的数据。ElasticSearch在底层利用Lucene完成其索引功能,因此其许多基本概念源于Lucene。

开源分布式数据库管理系统:Cassandra—

最初是由Facebook开发的,旨在处理许多商品服务器上的大量数据,提供高可用性,没有单点故障。

开源分布式NoSQL数据库系统:Apache Cassandra

集Google BigTable的数据模型与Amazon Dynamo的完全分布式架构于一身。于2008开源,此后,由于Cassandra良好的可扩展性,被Digg、Twitter等Web 2.0网站所采纳,成为了一种流行的分布式结构化数据存储方案。

因Cassandra是用Java编写的,所以理论上在具有JDK6及以上版本的机器中都可以运行,官方测试的JDK还有OpenJDK 及Sun的JDK。 Cassandra的操作命令,类似于我们平时操作的关系数据库,对于熟悉MySQL的朋友来说,操作会很容易上手。

跨平台的,面向文档的数据库:MongoDB

MongoDB是一个基于分布式文件存储的数据库,使用C++语言编写。旨在为Web应用提供可扩展的高性能数据存储解决方案。应用性能高低依赖于数据库性能,MongoDB则是非关系数据库中功能最丰富,最像关系数据库的,随着MongDB 3.4版本发布,其应用场景适用能力得到了进一步拓展。

MongoDB的核心优势就是灵活的文档模型、高可用复制集、可扩展分片集群。你可以试着从几大方面了解MongoDB,如实时监控MongoDB工具、内存使用量和页面错误、连接数、数据库操作、复制集等。

开源(BSD许可)内存数据结构存储:Redis 用作数据库,缓存和消息代理。

Redis是一个开源的使用ANSI C语言编写的、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。Redis 有三个主要使其有别于其它很多竞争对手的特点:Redis是完全在内存中保存数据的数据库,使用磁盘只是为了持久性目的; Redis相比许多键值数据存储系统有相对丰富的数据类型; Redis可以将数据复制到任意数量的从服务器中。大数据学习交流裙,记得是529加867加072,一起学习交流

基于Java的开源内存数据网格:Hazelcast

Hazelcast 是一种内存数据网格 in-memory data grid,提供Java程序员关键任务交易和万亿级内存应用。虽然Hazelcast没有所谓的‘Master’,但是仍然有一个Leader节点(the oldest member),这个概念与ZooKeeper中的Leader类似,但是实现原理却完全不同。同时,Hazelcast中的数据是分布式的,每一个member持有部分数据和相应的backup数据,这点也与ZooKeeper不同。

Hazelcast的应用便捷性深受开发者喜欢,但如果要投入使用,还需要慎重考虑。

广泛使用的开源Java分布式缓存:EHCache主要面向通用缓存、Java EE和轻量级容器。

EhCache 是一个纯Java的进程内缓存框架,具有快速、精干等特点,是Hibernate中默认的CacheProvider。主要特性有:快速简单,具有多种缓存策略;缓存数据有两级,内存和磁盘,因此无需担心容量问题;缓存数据会在虚拟机重启的过程中写入磁盘;可以通过RMI、可插入API等方式进行分布式缓存;具有缓存和缓存管理器的侦听接口;支持多缓存管理器实例,以及一个实例的多个缓存区域;提供Hibernate的缓存实现。

用Java编写的开源软件框架,用于分布式存储,并对非常大的数据集进行分布式处理:Hadoop

用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群进行高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算。

上一篇:Socket通讯模块压力及大数据对比工具开发之aperlib


下一篇:java后台创建url连接,获取接口数据