2千万是由B+树中非叶子结点的指针数*一个叶子结点可以存储的记录数,乘积的结果就是一颗B+树能够存放的记录数总和。
在InnoDB中,B+树的层数一般是1-3层
一个问题?
InnoDB一棵B+树可以存放多少行数据?这个问题的简单回答是:约2千万。为什么是这么多呢?因为这是可以算出来的,要搞清楚这个问题,我们先从InnoDB索引数据结构、数据组织方式说起。
我们都知道计算机在存储数据的时候,有最小存储单元,这就好比我们今天进行现金的流通最小单位是一毛。在计算机中磁盘存储数据最小单元是扇区,一个扇区的大小是512字节,而文件系统(例如XFS/EXT4)他的最小单元是块,一个块的大小是4k(41024字节),而对于我们的InnoDB存储引擎也有自己的最小储存单元——页(Page),一个页的大小是16K(161024字节)。
下面几张图可以帮你理解最小存储单元:
文件系统中一个文件大小只有1个字节,但不得不占磁盘上4KB的空间。
- 1、InnoDB存储引擎的最小存储单元是页,页可以用于存放数据也可以用于存放键值+指针,在B+树中叶子节点存放数据,非叶子节点存放键值+指针。
- 2、索引组织表通过非叶子节点的二分查找法以及指针确定数据在哪个页中,进而在去数据页中查找到需要的数据;
那么回到我们开始的问题,通常一棵B+树可以存放多少行数据?
这里我们先假设B+树高为2,即存在一个根节点和若干个叶子节点,那么这棵B+树的存放总记录数为:根节点指针数单个叶子节点记录行数。
上文我们已经说明单个叶子节点(页)中的记录数=16K/1K=16。(这里假设一行记录的数据大小为1k,实际上现在很多互联网业务数据记录大小通常就是1K左右)。
那么现在我们需要计算出非叶子节点能存放多少指针,其实这也很好算,我们假设主键ID为bigint类型,长度为8字节,而指针大小在InnoDB源码中设置为6字节,这样一共14字节,我们一个页中能存放多少这样的单元,其实就代表有多少指针,即16384/14=1170。那么可以算出一棵高度为2的B+树,能存放117016=18720条这样的数据记录。
=假设每一页存16条记录,则2层的B+数共1170页,就存放1170*16条记录================
根据同样的原理我们可以算出一个高度为3的B+树可以存放:1170117016=21902400条这样的记录。所以在InnoDB中B+树高度一般为1-3层,它就能满足千万级的数据存储。在查找数据时一次页的查找代表一次IO,所以通过主键索引查询通常只需要1-3次IO操作即可查找到数据。
B+树是几层,IO操作就要做几次
最后回顾一道面试题
为什么MySQL的索引要使用B+树而不是其它树形结构?比如B树?
现在这个问题的复杂版本可以参考本文;
他的简单版本回答是:
因为B树不管叶子节点还是非叶子节点,都会保存数据,这样导致在非叶子节点中能保存的指针数量变少(有些资料也称为扇出),指针少的情况下要保存大量数据,只能增加树的高度,导致IO操作变多,查询性能变低;