高并发之——两种异步模型与深度解析Future接口

一、两种异步模型

在Java的并发编程中,大体上会分为两种异步编程模型,一类是直接以异步的形式来并行运行其他的任务,不需要返回任务的结果数据。一类是以异步的形式运行其他任务,需要返回结果。

1.无返回结果的异步模型

无返回结果的异步任务,可以直接将任务丢进线程或线程池中运行,此时,无法直接获得任务的执行结果数据,一种方式是可以使用回调方法来获取任务的运行结果。

具体的方案是:定义一个回调接口,并在接口中定义接收任务结果数据的方法,具体逻辑在回调接口的实现类中完成。将回调接口与任务参数一同放进线程或线程池中运行,任务运行后调用接口方法,执行回调接口实现类中的逻辑来处理结果数据。这里,给出一个简单的示例供参考。

  • 定义回调接口
package io.binghe.concurrent.lab04;
/**
 * @author binghe
 * @version 1.0.0
 * @description 定义回调接口
 */
public interface TaskCallable<T> {
    T callable(T t);
}

便于接口的通用型,这里为回调接口定义了泛型。

  • 定义任务结果数据的封装类
package io.binghe.concurrent.lab04;
import java.io.Serializable;
/**
 * @author binghe
 * @version 1.0.0
 * @description 任务执行结果
 */
public class TaskResult implements Serializable {
    private static final long serialVersionUID = 8678277072402730062L;
    /**
     * 任务状态
     */
    private Integer taskStatus;
    /**
     * 任务消息
     */
    private String taskMessage;
    /**
     * 任务结果数据
     */
    private String taskResult;
    //省略getter和setter方法
    @Override
    public String toString() {
        return "TaskResult{" +
                "taskStatus=" + taskStatus +
                ", taskMessage='" + taskMessage + '\'' +
                ", taskResult='" + taskResult + '\'' +
                '}';
    }
}


  • 创建回调接口的实现类

回调接口的实现类主要用来对任务的返回结果进行相应的业务处理,这里,为了方便演示,只是将结果数据返回。大家需要根据具体的业务场景来做相应的分析和处理。

package io.binghe.concurrent.lab04;
/**
 * @author binghe
 * @version 1.0.0
 * @description 回调函数的实现类
 */
public class TaskHandler implements TaskCallable<TaskResult> {
    @Override
public TaskResult callable(TaskResult taskResult) {
//TODO 拿到结果数据后进一步处理
    System.out.println(taskResult.toString());
        return taskResult;
    }
}


  • 创建任务的执行类

任务的执行类是具体执行任务的类,实现Runnable接口,在此类中定义一个回调接口类型的成员变量和一个String类型的任务参数(模拟任务的参数),并在构造方法中注入回调接口和任务参数。在run方法中执行任务,任务完成后将任务的结果数据封装成TaskResult对象,调用回调接口的方法将TaskResult对象传递到回调方法中。

package io.binghe.concurrent.lab04;
/**
 * @author binghe
 * @version 1.0.0
 * @description 任务执行类
 */
public class TaskExecutor implements Runnable{
    private TaskCallable<TaskResult> taskCallable;
    private String taskParameter;
    public TaskExecutor(TaskCallable<TaskResult> taskCallable, String taskParameter){
        this.taskCallable = taskCallable;
        this.taskParameter = taskParameter;
    }
    @Override
    public void run() {
        //TODO 一系列业务逻辑,将结果数据封装成TaskResult对象并返回
        TaskResult result = new TaskResult();
        result.setTaskStatus(1);
        result.setTaskMessage(this.taskParameter);
        result.setTaskResult("异步回调成功");
        taskCallable.callable(result);
    }
}

到这里,整个大的框架算是完成了,接下来,就是测试看能否获取到异步任务的结果了。

  • 异步任务测试类
package io.binghe.concurrent.lab04;
/**
 * @author binghe
 * @version 1.0.0
 * @description 测试回调
 */
public class TaskCallableTest {
    public static void main(String[] args){
        TaskCallable<TaskResult> taskCallable = new TaskHandler();
        TaskExecutor taskExecutor = new TaskExecutor(taskCallable, "测试回调任务");
        new Thread(taskExecutor).start();
    }
}

在测试类中,使用Thread类创建一个新的线程,并启动线程运行任务。运行程序最终的接口数据如下所示。

TaskResult{taskStatus=1, taskMessage='测试回调任务', taskResult='异步回调成功'}

大家可以细细品味下这种获取异步结果的方式。这里,只是简单的使用了Thread类来创建并启动线程,也可以使用线程池的方式实现。大家可自行实现以线程池的方式通过回调接口获取异步结果。

2.有返回结果的异步模型

尽管使用回调接口能够获取异步任务的结果,但是这种方式使用起来略显复杂。在JDK中提供了可以直接返回异步结果的处理方案。最常用的就是使用Future接口或者其实现类FutureTask来接收任务的返回结果。

  • 使用Future接口获取异步结果

使用Future接口往往配合线程池来获取异步执行结果,如下所示。

package io.binghe.concurrent.lab04;
import java.util.concurrent.*;
/**
 * @author binghe
 * @version 1.0.0
 * @description 测试Future获取异步结果
 */
public class FutureTest {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        ExecutorService executorService = Executors.newSingleThreadExecutor();
        Future<String> future = executorService.submit(new Callable<String>() {
            @Override
            public String call() throws Exception {
                return "测试Future获取异步结果";
            }
        });
        System.out.println(future.get());
        executorService.shutdown();
    }
}

运行结果如下所示。

测试Future获取异步结果


  • 使用FutureTask类获取异步结果

FutureTask类既可以结合Thread类使用也可以结合线程池使用,接下来,就看下这两种使用方式。

结合Thread类的使用示例如下所示。

package io.binghe.concurrent.lab04;
import java.util.concurrent.*;
/**
 * @author binghe
 * @version 1.0.0
 * @description 测试FutureTask获取异步结果
 */
public class FutureTaskTest {
    public static void main(String[] args)throws ExecutionException, InterruptedException{
        FutureTask<String> futureTask = new FutureTask<>(new Callable<String>() {
            @Override
            public String call() throws Exception {
                return "测试FutureTask获取异步结果";
            }
        });
        new Thread(futureTask).start();
        System.out.println(futureTask.get());
    }
}

运行结果如下所示。

测试FutureTask获取异步结果

结合线程池的使用示例如下。

package io.binghe.concurrent.lab04;
import java.util.concurrent.*;
/**
 * @author binghe
 * @version 1.0.0
 * @description 测试FutureTask获取异步结果
 */
public class FutureTaskTest {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        ExecutorService executorService = Executors.newSingleThreadExecutor();
        FutureTask<String> futureTask = new FutureTask<>(new Callable<String>() {
            @Override
            public String call() throws Exception {
                return "测试FutureTask获取异步结果";
            }
        });
        executorService.execute(futureTask);
        System.out.println(futureTask.get());
        executorService.shutdown();
    }
}

运行结果如下所示。

测试FutureTask获取异步结果

可以看到使用Future接口或者FutureTask类来获取异步结果比使用回调接口获取异步结果简单多了。

注意:实现异步的方式很多,这里只是用多线程举例。

接下来,就深入分析下Future接口。

二、深度解析Future接口

1.Future接口

Future是JDK1.5新增的异步编程接口,其源代码如下所示。

package java.util.concurrent;
public interface Future<V> {
    boolean cancel(boolean mayInterruptIfRunning);
    boolean isCancelled();
    boolean isDone();
    V get() throws InterruptedException, ExecutionException;
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

可以看到,在Future接口中,总共定义了5个抽象方法。接下来,就分别介绍下这5个方法的含义。

  • cancel(boolean)

取消任务的执行,接收一个boolean类型的参数,成功取消任务,则返回true,否则返回false。当任务已经完成,已经结束或者因其他原因不能取消时,方法会返回false,表示任务取消失败。当任务未启动调用了此方法,并且结果返回true(取消成功),则当前任务不再运行。如果任务已经启动,会根据当前传递的boolean类型的参数来决定是否中断当前运行的线程来取消当前运行的任务。

  • isCancelled()

判断任务在完成之前是否被取消,如果在任务完成之前被取消,则返回true;否则,返回false。

这里需要注意一个细节:只有任务未启动,或者在完成之前被取消,才会返回true,表示任务已经被成功取消。其他情况都会返回false。

  • isDone()

判断任务是否已经完成,如果任务正常结束、抛出异常退出、被取消,都会返回true,表示任务已经完成。

  • get()

当任务完成时,直接返回任务的结果数据;当任务未完成时,等待任务完成并返回任务的结果数据。

  • get(long, TimeUnit)

当任务完成时,直接返回任务的结果数据;当任务未完成时,等待任务完成,并设置了超时等待时间。在超时时间内任务完成,则返回结果;否则,抛出TimeoutException异常。

2.RunnableFuture接口

Future接口有一个重要的子接口,那就是RunnableFuture接口,RunnableFuture接口不但继承了Future接口,而且继承了java.lang.Runnable接口,其源代码如下所示。

package java.util.concurrent;
public interface RunnableFuture<V> extends Runnable, Future<V> {
    void run();
}

这里,问一下,RunnableFuture接口中有几个抽象方法?想好了再说!哈哈哈。。。

这个接口比较简单,run()方法就是运行任务时调用的方法。

3.FutureTask类

FutureTask类是RunnableFuture接口的一个非常重要的实现类,它实现了RunnableFuture接口、Future接口和Runnable接口的所有方法。FutureTask类的源代码比较多,这个就不粘贴了,大家自行到java.util.concurrent下查看。

(1)FutureTask类中的变量与常量

在FutureTask类中首先定义了一个状态变量state,这个变量使用了volatile关键字修饰,这里,大家只需要知道volatile关键字通过内存屏障和禁止重排序优化来实现线程安全,后续会单独深度分析volatile关键字是如何保证线程安全的。紧接着,定义了几个任务运行时的状态常量,如下所示。

private volatile int state;
private static final int NEW          = 0;
private static final int COMPLETING   = 1;
private static final int NORMAL       = 2;
private static final int EXCEPTIONAL  = 3;
private static final int CANCELLED    = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED  = 6;

其中,代码注释中给出了几个可能的状态变更流程,如下所示。

NEW -> COMPLETING -> NORMAL
NEW -> COMPLETING -> EXCEPTIONAL
NEW -> CANCELLED
NEW -> INTERRUPTING -> INTERRUPTED

接下来,定义了其他几个成员变量,如下所示.

private Callable<V> callable;
private Object outcome; 
private volatile Thread runner;
private volatile WaitNode waiters;

又看到我们所熟悉的Callable接口了,Callable接口那肯定就是用来调用call()方法执行具体任务了。

  • outcome:Object类型,表示通过get()方法获取到的结果数据或者异常信息。
  • runner:运行Callable的线程,运行期间会使用CAS保证线程安全,这里大家只需要知道CAS是Java保证线程安全的一种方式,后续文章中会深度分析CAS如何保证线程安全。
  • waiters:WaitNode类型的变量,表示等待线程的堆栈,在FutureTask的实现中,会通过CAS结合此堆栈交换任务的运行状态。


看一下WaitNode类的定义,如下所示。

static final class WaitNode {
    volatile Thread thread;
    volatile WaitNode next;
    WaitNode() { thread = Thread.currentThread(); }
}

可以看到,WaitNode类是FutureTask类的静态内部类,类中定义了一个Thread成员变量和指向下一个WaitNode节点的引用。其中通过构造方法将thread变量设置为当前线程。

(2)构造方法

接下来,是FutureTask的两个构造方法,比较简单,如下所示。

public FutureTask(Callable<V> callable) {
    if (callable == null)
        throw new NullPointerException();
    this.callable = callable;
    this.state = NEW;
}
public FutureTask(Runnable runnable, V result) {
    this.callable = Executors.callable(runnable, result);
    this.state = NEW;
}
(3)是否取消与完成方法

继续向下看源码,看到一个任务是否取消的方法,和一个任务是否完成的方法,如下所示。

public boolean isCancelled() {
    return state >= CANCELLED;
}
public boolean isDone() {
    return state != NEW;
}

这两方法中,都是通过判断任务的状态来判定任务是否已取消和已完成的。为啥会这样判断呢?再次查看FutureTask类中定义的状态常量发现,其常量的定义是有规律的,并不是随意定义的。其中,大于或者等于CANCELLED的常量为CANCELLED、INTERRUPTING和INTERRUPTED,这三个状态均可以表示线程已经被取消。当状态不等于NEW时,可以表示任务已经完成。

通过这里,大家可以学到一点:以后在编码过程中,要按照规律来定义自己使用的状态,尤其是涉及到业务中有频繁的状态变更的操作,有规律的状态可使业务处理变得事半功倍,这也是通过看别人的源码设计能够学到的,这里,建议大家还是多看别人写的优秀的开源框架的源码。

(4)取消方法

我们继续向下看源码,接下来,看到的是cancel(boolean)方法,如下所示。

public boolean cancel(boolean mayInterruptIfRunning) {
    if (!(state == NEW &&
          UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
              mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
        return false;
    try {    // in case call to interrupt throws exception
        if (mayInterruptIfRunning) {
            try {
                Thread t = runner;
                if (t != null)
                    t.interrupt();
            } finally { // final state
                UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
            }
        }
    } finally {
        finishCompletion();
    }
    return true;
}

接下来,拆解cancel(boolean)方法。在cancel(boolean)方法中,首先判断任务的状态和CAS的操作结果,如果任务的状态不等于NEW或者CAS的操作返回false,则直接返回false,表示任务取消失败。如下所示。

if (!(state == NEW &&
      UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
          mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
    return false;

接下来,在try代码块中,首先判断是否可以中断当前任务所在的线程来取消任务的运行。如果可以中断当前任务所在的线程,则以一个Thread临时变量来指向运行任务的线程,当指向的变量不为空时,调用线程对象的interrupt()方法来中断线程的运行,最后将线程标记为被中断的状态。如下所示。

try {
    if (mayInterruptIfRunning) {
        try {
            Thread t = runner;
            if (t != null)
                t.interrupt();
        } finally { // final state
            UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
        }
    }
}

这里,发现变更任务状态使用的是UNSAFE.putOrderedInt()方法,这个方法是个什么鬼呢?点进去看一下,如下所示。

public native void putOrderedInt(Object var1, long var2, int var4);

可以看到,又是一个本地方法,嘿嘿,这里先不管它,后续文章会详解这些方法的作用。

接下来,cancel(boolean)方法会进入finally代码块,如下所示。

finally {
    finishCompletion();
}

可以看到在finallly代码块中调用了finishCompletion()方法,顾名思义,finishCompletion()方法表示结束任务的运行,接下来看看它是如何实现的。点到finishCompletion()方法中看一下,如下所示。

private void finishCompletion() {
    // assert state > COMPLETING;
    for (WaitNode q; (q = waiters) != null;) {
        if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
            for (;;) {
                Thread t = q.thread;
                if (t != null) {
                    q.thread = null;
                    LockSupport.unpark(t);
                }
                WaitNode next = q.next;
                if (next == null)
                    break;
                q.next = null; // unlink to help gc
                q = next;
            }
            break;
        }
    }
    done();
    callable = null;        // to reduce footprint
}

在finishCompletion()方法中,首先定义一个for循环,循环终止因子为waiters为null,在循环中,判断CAS操作是否成功,如果成功进行if条件中的逻辑。首先,定义一个for自旋循环,在自旋循环体中,唤醒WaitNode堆栈中的线程,使其运行完成。当WaitNode堆栈中的线程运行完成后,通过break退出外层for循环。接下来调用done()方法。done()方法又是个什么鬼呢?点进去看一下,如下所示。

protected void done() { }

可以看到,done()方法是一个空的方法体,交由子类来实现具体的业务逻辑。

当我们的具体业务中,需要在取消任务时,执行一些额外的业务逻辑,可以在子类中覆写done()方法的实现。

(5)get()方法

继续向下看FutureTask类的代码,FutureTask类中实现了两个get()方法,如下所示。

public V get() throws InterruptedException, ExecutionException {
    int s = state;
    if (s <= COMPLETING)
        s = awaitDone(false, 0L);
    return report(s);
}
public V get(long timeout, TimeUnit unit)
    throws InterruptedException, ExecutionException, TimeoutException {
    if (unit == null)
        throw new NullPointerException();
    int s = state;
    if (s <= COMPLETING &&
        (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
        throw new TimeoutException();
    return report(s);
}

没参数的get()方法为当任务未运行完成时,会阻塞,直到返回任务结果。有参数的get()方法为当任务未运行完成,并且等待时间超出了超时时间,会TimeoutException异常。

两个get()方法的主要逻辑差不多,一个没有超时设置,一个有超时设置,这里说一下主要逻辑。判断任务的当前状态是否小于或者等于COMPLETING,也就是说,任务是NEW状态或者COMPLETING,调用awaitDone()方法,看下awaitDone()方法的实现,如下所示。

private int awaitDone(boolean timed, long nanos)
    throws InterruptedException {
    final long deadline = timed ? System.nanoTime() + nanos : 0L;
    WaitNode q = null;
    boolean queued = false;
    for (;;) {
        if (Thread.interrupted()) {
            removeWaiter(q);
            throw new InterruptedException();
        }
        int s = state;
        if (s > COMPLETING) {
            if (q != null)
                q.thread = null;
            return s;
        }
        else if (s == COMPLETING) // cannot time out yet
            Thread.yield();
        else if (q == null)
            q = new WaitNode();
        else if (!queued)
            queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                 q.next = waiters, q);
        else if (timed) {
            nanos = deadline - System.nanoTime();
            if (nanos <= 0L) {
                removeWaiter(q);
                return state;
            }
            LockSupport.parkNanos(this, nanos);
        }
        else
            LockSupport.park(this);
    }
}

接下来,拆解awaitDone()方法。在awaitDone()方法中,最重要的就是for自旋循环,在循环中首先判断当前线程是否被中断,如果已经被中断,则调用removeWaiter()将当前线程从堆栈中移除,并且抛出InterruptedException异常,如下所示。

if (Thread.interrupted()) {
    removeWaiter(q);
    throw new InterruptedException();
}

接下来,判断任务的当前状态是否完成,如果完成,并且堆栈句柄不为空,则将堆栈中的当前线程设置为空,返回当前任务的状态,如下所示。

int s = state;
if (s > COMPLETING) {
    if (q != null)
        q.thread = null;
    return s;
}

当任务的状态为COMPLETING时,使当前线程让出CPU资源,如下所示。

else if (s == COMPLETING)
    Thread.yield();

如果堆栈为空,则创建堆栈对象,如下所示。

else if (q == null)
    q = new WaitNode();

如果queued变量为false,通过CAS操作为queued赋值,如果awaitDone()方法传递的timed参数为true,则计算超时时间,当时间已超时,则在堆栈中移除当前线程并返回任务状态,如下所示。如果未超时,则重置超时时间,如下所示。

else if (!queued)
    queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                         q.next = waiters, q);
else if (timed) {
    nanos = deadline - System.nanoTime();
    if (nanos <= 0L) {
        removeWaiter(q);
        return state;
    }
    LockSupport.parkNanos(this, nanos);
}

如果不满足上述的所有条件,则将当前线程设置为等待状态,如下所示。

else
    LockSupport.park(this);

接下来,回到get()方法中,当awaitDone()方法返回结果,或者任务的状态不满足条件时,都会调用report()方法,并将当前任务的状态传递到report()方法中,并返回结果,如下所示。

return report(s);

看来,这里还要看下report()方法啊,点进去看下report()方法的实现,如下所示。

private V report(int s) throws ExecutionException {
    Object x = outcome;
    if (s == NORMAL)
        return (V)x;
    if (s >= CANCELLED)
        throw new CancellationException();
    throw new ExecutionException((Throwable)x);
}

可以看到,report()方法的实现比较简单,首先,将outcome数据赋值给x变量,接下来,主要是判断接收到的任务状态,如果状态为NORMAL,则将x强转为泛型类型返回;当任务的状态大于或者等于CANCELLED,也就是任务已经取消,则抛出CancellationException异常,其他情况则抛出ExecutionException异常。

至此,get()方法分析完成。注意:一定要理解get()方法的实现,因为get()方法是我们使用Future接口和FutureTask类时,使用的比较频繁的一个方法。

(6)set()方法与setException()方法

继续看FutureTask类的代码,接下来看到的是set()方法与setException()方法,如下所示。

protected void set(V v) {
    if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
        outcome = v;
        UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
        finishCompletion();
    }
}
protected void setException(Throwable t) {
    if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
        outcome = t;
        UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
        finishCompletion();
    }
}

通过源码可以看出,set()方法与setException()方法整体逻辑几乎一样,只是在设置任务状态时一个将状态设置为NORMAL,一个将状态设置为EXCEPTIONAL。

至于finishCompletion()方法,前面已经分析过。

(7)run()方法与runAndReset()方法

接下来,就是run()方法了,run()方法的源代码如下所示。

public void run() {
    if (state != NEW ||
        !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                     null, Thread.currentThread()))
        return;
    try {
        Callable<V> c = callable;
        if (c != null && state == NEW) {
            V result;
            boolean ran;
            try {
                result = c.call();
                ran = true;
            } catch (Throwable ex) {
                result = null;
                ran = false;
                setException(ex);
            }
            if (ran)
                set(result);
        }
    } finally {
        // runner must be non-null until state is settled to
        // prevent concurrent calls to run()
        runner = null;
        // state must be re-read after nulling runner to prevent
        // leaked interrupts
        int s = state;
        if (s >= INTERRUPTING)
            handlePossibleCancellationInterrupt(s);
    }
}

可以这么说,只要使用了Future和FutureTask,就必然会调用run()方法来运行任务,掌握run()方法的流程是非常有必要的。在run()方法中,如果当前状态不是NEW,或者CAS操作返回的结果为false,则直接返回,不再执行后续逻辑,如下所示。

if (state != NEW ||
    !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                 null, Thread.currentThread()))
    return;

接下来,在try代码块中,将成员变量callable赋值给一个临时变量c,判断临时变量不等于null,并且任务状态为NEW,则调用Callable接口的call()方法,并接收结果数据。并将ran变量设置为true。当程序抛出异常时,将接收结果的变量设置为null,ran变量设置为false,并且调用setException()方法将任务的状态设置为EXCEPTIONA。接下来,如果ran变量为true,则调用set()方法,如下所示。

try {
    Callable<V> c = callable;
    if (c != null && state == NEW) {
        V result;
        boolean ran;
        try {
            result = c.call();
            ran = true;
        } catch (Throwable ex) {
            result = null;
            ran = false;
            setException(ex);
        }
        if (ran)
            set(result);
    }
}

接下来,程序会进入finally代码块中,如下所示。

finally {
    // runner must be non-null until state is settled to
    // prevent concurrent calls to run()
    runner = null;
    // state must be re-read after nulling runner to prevent
    // leaked interrupts
    int s = state;
    if (s >= INTERRUPTING)
        handlePossibleCancellationInterrupt(s);
}

这里,将runner设置为null,如果任务的当前状态大于或者等于INTERRUPTING,也就是线程被中断了。则调用handlePossibleCancellationInterrupt()方法,接下来,看下handlePossibleCancellationInterrupt()方法的实现。

private void handlePossibleCancellationInterrupt(int s) {
    if (s == INTERRUPTING)
        while (state == INTERRUPTING)
            Thread.yield();
}

可以看到,handlePossibleCancellationInterrupt()方法的实现比较简单,当任务的状态为INTERRUPTING时,使用while()循环,条件为当前任务状态为INTERRUPTING,将当前线程占用的CPU资源释放,也就是说,当任务运行完成后,释放线程所占用的资源。

runAndReset()方法的逻辑与run()差不多,只是runAndReset()方法会在finally代码块中将任务状态重置为NEW。runAndReset()方法的源代码如下所示,就不重复说明了。

protected boolean runAndReset() {
    if (state != NEW ||
        !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                     null, Thread.currentThread()))
        return false;
    boolean ran = false;
    int s = state;
    try {
        Callable<V> c = callable;
        if (c != null && s == NEW) {
            try {
                c.call(); // don't set result
                ran = true;
            } catch (Throwable ex) {
                setException(ex);
            }
        }
    } finally {
        // runner must be non-null until state is settled to
        // prevent concurrent calls to run()
        runner = null;
        // state must be re-read after nulling runner to prevent
        // leaked interrupts
        s = state;
        if (s >= INTERRUPTING)
            handlePossibleCancellationInterrupt(s);
    }
    return ran && s == NEW;
}
(8)removeWaiter()方法

removeWaiter()方法中主要是使用自旋循环的方式来移除WaitNode中的线程,比较简单,如下所示。

private void removeWaiter(WaitNode node) {
    if (node != null) {
        node.thread = null;
        retry:
        for (;;) {          // restart on removeWaiter race
            for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
                s = q.next;
                if (q.thread != null)
                    pred = q;
                else if (pred != null) {
                    pred.next = s;
                    if (pred.thread == null) // check for race
                        continue retry;
                }
                else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                      q, s))
                    continue retry;
            }
            break;
        }
    }
}
(9)最后的代码

最后,在FutureTask类的最后,有如下代码。

// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long stateOffset;
private static final long runnerOffset;
private static final long waitersOffset;
static {
    try {
        UNSAFE = sun.misc.Unsafe.getUnsafe();
        Class<?> k = FutureTask.class;
        stateOffset = UNSAFE.objectFieldOffset
            (k.getDeclaredField("state"));
        runnerOffset = UNSAFE.objectFieldOffset
            (k.getDeclaredField("runner"));
        waitersOffset = UNSAFE.objectFieldOffset
            (k.getDeclaredField("waiters"));
    } catch (Exception e) {
        throw new Error(e);
    }
}

关于这些代码的作用,会在后续深度解析CAS文章中详细说明,这里就不再探讨。

至此,关于Future接口和FutureTask类的源码就分析完了。

记住:你比别人强的地方,不是你做过多少年的CRUD工作,而是你比别人掌握了更多深入的技能。不要总停留在CRUD的表面工作,理解并掌握底层原理并熟悉源码实现,并形成自己的抽象思维能力,做到灵活运用,才是你突破瓶颈,脱颖而出的重要方向!

最后,作为一名合格(发际线比较高)的开发人员或者资深(秃顶)的工程师和架构师来说,理解原理和掌握源码,并形成自己的抽象思维能力,灵活运用是你必须掌握的技能。

上一篇:图解排序算法之快速排序-双端探测法


下一篇:java对象 深度克隆(不实现Cloneable接口)和浅度克隆