How to use Datasets and DataLoader in PyTorch for custom text data

ref:

https://towardsdatascience.com/how-to-use-datasets-and-dataloader-in-pytorch-for-custom-text-data-270eed7f7c00

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

https://sparrow.dev/pytorch-dataloader/

Creating a PyTorch Dataset and managing it with Dataloader keeps your data manageable and helps to simplify your machine learning pipeline. a Dataset stores all your data, and Dataloader is can be used to iterate through the data, manage batches, transform the data, and much more.

Import libraries

import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader

Create a custom Dataset class

If the original data are as follows:

in numbers.cvs:

How to use Datasets and DataLoader in PyTorch for custom text data

torch.utils.data.Dataset is an abstract class representing a dataset. Your custom dataset should inherit Dataset and override the following methods:

  • __len__ so that len(dataset) returns the size of the dataset.
  • __getitem__ to support the indexing such that dataset[i] can be used to get iith sample.

We will read the csv in __init__ but leave the reading of images to __getitem__. This is memory efficient because all the images are not stored in the memory at once but read as required.

class SeqDataset(Dataset):
    def __init__(self, file_root, max_length) -> None:
        super(SeqDataset).__init__()

        self.sentences = pd.read_csv(file_root)
        self.max_length = max_length

    def __len__(self):
        return len(self.sentences)
    
    def __getitem__(self, index):
        # 字符串处理
        sentence_a = self.sentences.sentence_a[index][1:-1].split(",")
        sentence_b = self.sentences.sentence_b[index][1:-1].split(",")
        # ['3', '4', '5']
        # ['6', '7', '8']

        # listz转array
        sentence_a = np.array([int(x) for x in sentence_a])
        sentence_b = np.array([int(x) for x in sentence_b])
        # array([3, 4, 5])
        # array([6, 7, 8])

        # 补齐
        sentence_a = np.pad(sentence_a, (0, self.max_length-sentence_a.shape[0]), 'constant', constant_values=(0,0))
        sentence_b = np.pad(sentence_b, (0, self.max_length-sentence_b.shape[0]), 'constant', constant_values=(0,0))
        # array([3, 4, 5, 0, 0, 0, 0, 0, 0, 0])
        # array([6, 7, 8, 0, 0, 0, 0, 0, 0, 0])

        return sentence_a, sentence_b

Iterating through the dataset

We can iterate over the created dataset with a for i in range loop as before.

However, we are losing a lot of features by using a simple for loop to iterate over the data. In particular, we are missing out on:

  • Batching the data
  • Shuffling the data
  • Load the data in parallel using multiprocessing workers.

torch.utils.data.DataLoader is an iterator which provides all these features. Parameters used below should be clear. One parameter of interest is collate_fn. You can specify how exactly the samples need to be batched using collate_fn. However, default collate should work fine for most use cases.

    dataloader = DataLoader(dataset, batch_size=4,
                        shuffle=False, num_workers=0,  collate_fn=None)

    for batch_idx, batch in enumerate(dataloader):
        src, trg = batch
        print(src.shape)
        print(trg.shape)

Output:

(deeplearning) ➜  TransformerScratch python generate_data.py
torch.Size([4, 10]) torch.Size([4, 10])
tensor([[3, 4, 5, 0, 0, 0, 0, 0, 0, 0],
        [2, 3, 4, 0, 0, 0, 0, 0, 0, 0],
        [3, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [5, 6, 7, 8, 9, 0, 0, 0, 0, 0]])
tensor([[ 6,  7,  8,  0,  0,  0,  0,  0,  0,  0],
        [ 5,  6,  7,  0,  0,  0,  0,  0,  0,  0],
        [ 4,  0,  0,  0,  0,  0,  0,  0,  0,  0],
        [10, 11, 12, 13, 14,  0,  0,  0,  0,  0]])
torch.Size([4, 10]) torch.Size([4, 10])
tensor([[4, 5, 0, 0, 0, 0, 0, 0, 0, 0],
        [5, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [1, 2, 3, 4, 5, 0, 0, 0, 0, 0],
        [1, 2, 3, 4, 5, 0, 0, 0, 0, 0]])
tensor([[ 6,  7,  0,  0,  0,  0,  0,  0,  0,  0],
        [ 6,  0,  0,  0,  0,  0,  0,  0,  0,  0],
        [ 6,  7,  8,  9, 10,  0,  0,  0,  0,  0],
        [ 6,  7,  8,  9, 10,  0,  0,  0,  0,  0]])
torch.Size([2, 10]) torch.Size([2, 10])
tensor([[4, 5, 6, 0, 0, 0, 0, 0, 0, 0],
        [3, 4, 5, 0, 0, 0, 0, 0, 0, 0]])
tensor([[7, 8, 9, 0, 0, 0, 0, 0, 0, 0],
        [6, 7, 8, 0, 0, 0, 0, 0, 0, 0]])

Full Code

import torch
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import numpy as np
import ipdb


class SeqDataset(Dataset):
    def __init__(self, file_root, max_length) -> None:
        super(SeqDataset).__init__()

        self.sentences = pd.read_csv(file_root)
        self.max_length = max_length

    def __len__(self):
        return len(self.sentences)
    
    def __getitem__(self, index):
        # 字符串处理
        sentence_a = self.sentences.sentence_a[index][1:-1].split(",")
        sentence_b = self.sentences.sentence_b[index][1:-1].split(",")
        # ['3', '4', '5']
        # ['6', '7', '8']

        # listz转array
        sentence_a = np.array([int(x) for x in sentence_a])
        sentence_b = np.array([int(x) for x in sentence_b])
        # array([3, 4, 5])
        # array([6, 7, 8])

        # 补齐
        sentence_a = np.pad(sentence_a, (0, self.max_length-sentence_a.shape[0]), 'constant', constant_values=(0,0))
        sentence_b = np.pad(sentence_b, (0, self.max_length-sentence_b.shape[0]), 'constant', constant_values=(0,0))
        # array([3, 4, 5, 0, 0, 0, 0, 0, 0, 0])
        # array([6, 7, 8, 0, 0, 0, 0, 0, 0, 0])

        return sentence_a, sentence_b



if __name__ == "__main__":
    dataset = SeqDataset("./numbers.csv", 10)
    # print(dataset.__len__())
    # print(dataset.__getitem__(0))
    # print(dataset.__getitem__(6))


    dataloader = DataLoader(dataset, batch_size=4,
                        shuffle=False, num_workers=0,  collate_fn=None)

    for batch_idx, batch in enumerate(dataloader):
        src, trg = batch
        print(src.shape, trg.shape)
        print(src)
        print(trg)
        # ipdb.set_trace()

 

上一篇:PCL文件转换PCD转PLY


下一篇:SpringMVC-处理http请求的中间桥梁HandlerAdapter