Impala是什么:
Impala是Cloudera提供的?款开源的针对HDFS和HBASE中的PB级别数据进?交互式实时查询(Impala 速度快),Impala是参照?歌的新三篇论?当中的Dremel实现?来,其中旧三篇论?分别是 (BigTable,GFS,MapReduce)分别对应我们即将学的HBase和已经学过的HDFS以及MapReduce。
Impala最?卖点和最?特点就是快速,Impala中?翻译是??羚?。
Impala优势:
之前学习的Hive以及MR适合离线批处理,但是对交互式查询的场景?能为?(要求快速响应),所以为了 解决查询速度的问题,Cloudera公司依据Google的Dremel开发了Impala,Impala抛弃了MapReduce 使?了类似于传统的MPP数据库技术,??提?了查询的速度。
MPP是什么?
MPP (Massively Parallel Processing),就是?规模并?处理,在MPP集群中,每个节点资源都是独? 享有也就是有独?的磁盘和内存,每个节点通过?络互相连接,彼此协同计算,作为整体提供数据服 务。
Impala 优势:
- Impala没有采取MapReduce作为计算引擎,MR是?常好的分布式并?计算框架,但MR引擎更多 的是?向批处理模式,?不是?向交互式的SQL执?。与 Hive相?:Impala把整个查询任务转为 ?棵执?计划树,?不是?连串的MR任务,在分发执?计划后,Impala使?拉取的?式获取上个 阶段的执?结果,把结果数据、按执?树流式传递汇集,减少的了把中间结果写?磁盘的步骤,再 从磁盘读取数据的开销。Impala使?服务的?式避免 每次执?查询都需要启动的开销,即相? Hive没了MR启动时间。
- 使?LLVM(C++编写的编译器)产?运?代码,针对特定查询?成特定代码。
- 优秀的IO调度,Impala?持直接数据块读取和本地代码计算。
- 选择适合的数据存储格式可以得到最好的性能(Impala?持多种存储格式)。
- 尽可能使?内存,中间结果不写磁盘,及时通过?络以stream的?式传递。
Impala与Hive对?分析:
查询过程
- Hive:在Hive中,每个查询都有?个“冷启动”的常?问题。(map,reduce每次都要启动关闭,申 请资源,释放资源。。。)
- Impala:Impala避免了任何可能的启动开销,这是?种本地查询语?。 因为要始终处理查询,则 Impala守护程序进程总是在集群启动之后就准备就绪。守护进程在集群启动之后可以接收查询任 务并执?查询任务。
中间结果
- Hive:Hive通过MR引擎实现所有中间结果,中间结果需要落盘,这对降低数据处理速度有不利影 响。
- Impala:在执?程序之间使?流的?式传输中间结果,避免数据落盘。尽可能使?内存避免磁盘 开销
交互查询
- Hive:对于交互式计算,Hive不是理想的选择。
- Impala:对于交互式计算,Impala?常适合。(数据量级PB级)
计算引擎
- Hive:是基于批处理的Hadoop MapReduce
- Impala:更像是MPP数据库
容错
- Hive:Hive是容错的(通过MR&Yarn实现)
- Impala:Impala没有容错,由于良好的查询性能,Impala遇到错误会重新执??次查询
查询速度
- Impala:Impala?Hive快3-90倍。
Impala优势总结
- 1. Impala最?优点就是查询速度快,在?定数据量下;
- 2. 速度快的原因:避免了MR引擎的弊端,采?了MPP数据库技术
元数据更新:
因为impala 不能自动感知 hive对元数据的更新操作。
- 更新所有元数据,?动执?invalidate metadata;
- 更新某一个表的元数据,refresh dbname.tablename
impala架构图:
如果是大表join ,impala使用hash join,使得hash 值一样的 id去往同一节点,这样不同节点可以并行执行join操作。
如果是小表,impala使用 广播 join。
group by 操作: impala 会对分组字段进行hash 分发,这样不同节点可以并行执行局部group by 操作,最终merge所有节点的结果。
jdbc连接 impala:
impala的sql语法与hive基本一样,支持大部分的hive内置函数。
impala的命令行是impala-shell
关于impala的相关配置参考word 文档。
<dependencies> <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoopcommon --> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>2.9.2</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-common -- > <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-common</artifactId> <version>2.3.7</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-metastore --> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-metastore</artifactId> <version>2.3.7</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-service - -> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-service</artifactId> <version>2.3.7</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-jdbc --> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-jdbc</artifactId> <version>2.3.7</version> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-exec --> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-exec</artifactId> <version>2.3.7</version> </dependency> </dependencies>
package com.lagou.impala.jdbc; import java.sql.Connection; import java.sql.DriverManager; import java.sql.PreparedStatement; import java.sql.ResultSet; public class ImpalaTest { public static void main(String[] args) throws Exception { //定义连接impala的驱动和连接url String driver = "org.apache.hive.jdbc.HiveDriver"; String driverUrl = "jdbc:hive2://linux122:21050/default;auth=noSasl"; //查询的sql语句 String querySql = "select * from t1"; //获取连接 Class.forName(driver); //通过Drivermanager获取连接 final Connection connection = DriverManager.getConnection(driverUrl); final PreparedStatement ps = connection.prepareStatement(querySql); //执?查询 final ResultSet resultSet = ps.executeQuery(); //解析返回结果 //获取到每条数据的列数 final int columnCount = resultSet.getMetaData().getColumnCount(); //遍历结果集 while (resultSet.next()) { for (int i = 1; i <= columnCount; i++) { final String string = resultSet.getString(i); System.out.print(string + "\t"); } System.out.println(); } //关闭资源 ps.close(); connection.close(); } }