本文转载自:初探 Clang
作为一个iOS工程师,每次看到Xcode在进行漫长的编译的时候总是忍不住想深究一下自己手写的BUG是如何被生成的,所以下定决定研究一下我们的编译器。要探究首先要知道我们使用的是LLVM编译器。
一、常见几种编译器
目前市面上常见的编译器有以下两种
- GCC(GNU Compiler Collection)
- LLVM
1.1 LLVM(Low Level Virtual Machine)
LLVM是一个*软件项目,它是一种编译器基础设施,以C++写成,包含一系列模块化的编译器组件和工具链,用来开发编译器前端和后端。它是为了任意一种编程语言而写成的程序,利用虚拟技术创造出编译时期、链接时期、运行时期以及“闲置时期”的最优化。它最早以C/C++为实现对象,而当前它已支持包括ActionScript、Ada、D语言、Fortran、GLSL、Haskell、Java字节码、Objective-C、Swift、Python、Ruby、Rust、Scala以及C#等语言。
以上摘自*
1.2 GCC(GNU Compiler Collection)
GNU编译器套装(英语:GNU Compiler Collection,缩写为GCC),指一套编程语言编译器,以GPL及LGPL许可证所发行的*软件,也是GNU项目的关键部分,也是GNU工具链的主要组成部分之一。GCC(特别是其中的C语言编译器)也常被认为是跨平台编译器的事实标准。1985年由理查德·马修·斯托曼开始发展,现在由*软件基金会负责维护工作。
原名为GNU C语言编译器(GNU C Compiler),因为它原本只能处理C语言。GCC在发布后很快地得到扩展,变得可处理C++。之后也变得可处理Fortran、Pascal、Objective-C、Java、Ada,Go与其他语言。
许多操作系统,包括许多类Unix系统,如Linux及BSD家族都采用GCC作为标准编译器。
以上摘自*
1.3 LLVM与GCC
我们现在所使用的Xcode采用的是LLVM,以前曾经使用过GCC,见下表
Xcode 版本 | 应用编译器 |
---|---|
< Xcode3 | GCC |
Xcode3 | GCC + LLVM |
Xcode4.2 | 默认LLVM-Clang |
> Xcode5 | 废弃GCC |
那么,同样是编译器,为何Xcode最终选择LLVM而舍弃Clang呢
- Apple对Objective-C新增的特性,GCC并未配合给予实现
- GCC编译器前后端代码耦合度过高
- license GCC限制了LLVM-GCC的开发
二、LLVM 设计思想
以下是传统的三相设计思想
- 前端
- 优化器
- 后端
对于iOS开发者来说,整个流程可以简要概括为 Clang对代码进行处理形成中间层作为输出,llvm把CLang的输出作为输入生成机器码
2.1 Clang
下面就到了这篇文章的重点了,LLVM编译器的前端,Clang
这个软件项目在2005年由苹果计算机发起,是LLVM编译器工具集的前端(front-end),目的是输出代码对应的抽象语法树(Abstract Syntax Tree, AST),并将代码编译成LLVM Bitcode。接着在后端(back-end)使用LLVM编译成平台相关的机器语言 。Clang支持C、C++、Objective C。
在Clang语言中,使用Stmt来代表statement。Clang代码的单元(unit)皆为语句(statement),语法树的节点(node)类型就是Stmt。另外Clang的表达式(Expression)也是语句的一种,Clang使用Expr来代表Expression,Expr本身继承自Stmt。节点之下有子节点列表(sub-node-list)。
Clang本身性能优异,其生成的AST所耗用掉的内存仅仅是GCC的20%左右。FreeBSD操作系统自2014年1月发行的10.0版本开始将Clang/LLVM作为默认编译器[3]。
Clang的执行过程包含以下几步
- 宏替换,头文件导入
- 语法分析,代码切割为token
- 组成AST(抽象语法树)
- 生成中间码(IR)
下面我们创建一个CommandLine工程来试验一下,demo托管在Github
首先打开Xcode创建工程,语言选择objective-c接下来我们找到 main.m ,
2.1.1 首先查看编译步骤
clang -ccc-print-phases ClangTest/main.m
可以看到输出
0: input, "ClangTest/main.m", objective-c 1: preprocessor, {0}, objective-c-cpp-output 2: compiler, {1}, ir 3: backend, {2}, assembler 4: assembler, {3}, object 5: linker, {4}, image 6: bind-arch, "x86_64", {5}, image
2.1.2 查看预处理结果
也就是宏替换和头文件导入步骤
clang -E ClangTest/main.m
我们可以看到输出如下(前面部分省略)
# 1 "/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Foundation.framework/Headers/FoundationLegacySwiftCompatibility.h" 1 3 # 185 "/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Foundation.framework/Headers/Foundation.h" 2 3 # 10 "ClangTest/main.m" 2 int main(int argc, const char * argv[]) { @autoreleasepool { NSLog(@"Hello, World!"); } return 0; }
2.1.3 代码切割token
clang -fmodules -fsyntax-only -Xclang -dump-tokens ClangTest/main.m
输出如下
annot_module_include '#import <Foundation/Foundation.h> int main(int argc, const char * argv[]) { @autoreleasepool { // insert code here...' Loc=<ClangTest/main.m:9:1> int 'int' [StartOfLine] Loc=<ClangTest/main.m:11:1> identifier 'main' [LeadingSpace] Loc=<ClangTest/main.m:11:5> l_paren '(' Loc=<ClangTest/main.m:11:9> int 'int' Loc=<ClangTest/main.m:11:10> identifier 'argc' [LeadingSpace] Loc=<ClangTest/main.m:11:14> comma ',' Loc=<ClangTest/main.m:11:18> const 'const' [LeadingSpace] Loc=<ClangTest/main.m:11:20> char 'char' [LeadingSpace] Loc=<ClangTest/main.m:11:26> star '*' [LeadingSpace] Loc=<ClangTest/main.m:11:31> identifier 'argv' [LeadingSpace] Loc=<ClangTest/main.m:11:33> l_square '[' Loc=<ClangTest/main.m:11:37> r_square ']' Loc=<ClangTest/main.m:11:38> r_paren ')' Loc=<ClangTest/main.m:11:39> l_brace '{' [LeadingSpace] Loc=<ClangTest/main.m:11:41> at '@' [StartOfLine] [LeadingSpace] Loc=<ClangTest/main.m:12:5> identifier 'autoreleasepool' Loc=<ClangTest/main.m:12:6> l_brace '{' [LeadingSpace] Loc=<ClangTest/main.m:12:22> identifier 'NSLog' [StartOfLine] [LeadingSpace] Loc=<ClangTest/main.m:14:9> l_paren '(' Loc=<ClangTest/main.m:14:14> at '@' Loc=<ClangTest/main.m:14:15> string_literal '"Hello, World!"' Loc=<ClangTest/main.m:14:16> r_paren ')' Loc=<ClangTest/main.m:14:31> semi ';' Loc=<ClangTest/main.m:14:32> r_brace '}' [StartOfLine] [LeadingSpace] Loc=<ClangTest/main.m:15:5> return 'return' [StartOfLine] [LeadingSpace] Loc=<ClangTest/main.m:16:5> numeric_constant '0' [LeadingSpace] Loc=<ClangTest/main.m:16:12> semi ';' Loc=<ClangTest/main.m:16:13> r_brace '}' [StartOfLine] Loc=<ClangTest/main.m:17:1> eof '' Loc=<ClangTest/main.m:17:2>
可以看到,括号,符号,关键字等等都被切割出来了
2.1.4 语法分析,组成AST(抽象语法树)
clang -fmodules -fsyntax-only -Xclang -ast-dump ClangTest/main.m
可以看到AST输出如下:
TranslationUnitDecl 0x7f95b28032e8 <<invalid sloc>> <invalid sloc> |-TypedefDecl 0x7f95b2803b80 <<invalid sloc>> <invalid sloc> implicit __int128_t '__int128' | `-BuiltinType 0x7f95b2803880 '__int128' |-TypedefDecl 0x7f95b2803be8 <<invalid sloc>> <invalid sloc> implicit __uint128_t 'unsigned __int128' | `-BuiltinType 0x7f95b28038a0 'unsigned __int128' |-TypedefDecl 0x7f95b2803c80 <<invalid sloc>> <invalid sloc> implicit SEL 'SEL *' | `-PointerType 0x7f95b2803c40 'SEL *' imported | `-BuiltinType 0x7f95b2803ae0 'SEL' |-TypedefDecl 0x7f95b2803d58 <<invalid sloc>> <invalid sloc> implicit id 'id' | `-ObjCObjectPointerType 0x7f95b2803d00 'id' imported | `-ObjCObjectType 0x7f95b2803cd0 'id' imported |-TypedefDecl 0x7f95b2803e38 <<invalid sloc>> <invalid sloc> implicit Class 'Class' | `-ObjCObjectPointerType 0x7f95b2803de0 'Class' imported | `-ObjCObjectType 0x7f95b2803db0 'Class' imported |-ObjCInterfaceDecl 0x7f95b2803e88 <<invalid sloc>> <invalid sloc> implicit Protocol |-TypedefDecl 0x7f95b28465e8 <<invalid sloc>> <invalid sloc> implicit __NSConstantString 'struct __NSConstantString_tag' | `-RecordType 0x7f95b2846400 'struct __NSConstantString_tag' | `-Record 0x7f95b2803f50 '__NSConstantString_tag' |-TypedefDecl 0x7f95b2846680 <<invalid sloc>> <invalid sloc> implicit __builtin_ms_va_list 'char *' | `-PointerType 0x7f95b2846640 'char *' | `-BuiltinType 0x7f95b2803380 'char' |-TypedefDecl 0x7f95b2846948 <<invalid sloc>> <invalid sloc> implicit __builtin_va_list 'struct __va_list_tag [1]' | `-ConstantArrayType 0x7f95b28468f0 'struct __va_list_tag [1]' 1 | `-RecordType 0x7f95b2846770 'struct __va_list_tag' | `-Record 0x7f95b28466d0 '__va_list_tag' |-ImportDecl 0x7f95b30612f8 <ClangTest/main.m:9:1> col:1 implicit Foundation |-FunctionDecl 0x7f95b30615a8 <line:11:1, line:17:1> line:11:5 main 'int (int, const char **)' | |-ParmVarDecl 0x7f95b3061348 <col:10, col:14> col:14 argc 'int' | |-ParmVarDecl 0x7f95b3061460 <col:20, col:38> col:33 argv 'const char **':'const char **' | `-CompoundStmt 0x7f95b2260ae8 <col:41, line:17:1> | |-ObjCAutoreleasePoolStmt 0x7f95b2260aa0 <line:12:5, line:15:5> | | `-CompoundStmt 0x7f95b2260a88 <line:12:22, line:15:5> | | `-CallExpr 0x7f95b2260a40 <line:14:9, col:31> 'void' | | |-ImplicitCastExpr 0x7f95b2260a28 <col:9> 'void (*)(id, ...)' <FunctionToPointerDecay> | | | `-DeclRefExpr 0x7f95b2260910 <col:9> 'void (id, ...)' Function 0x7f95b30616e8 'NSLog' 'void (id, ...)' | | `-ImplicitCastExpr 0x7f95b2260a70 <col:15, col:16> 'id':'id' <BitCast> | | `-ObjCStringLiteral 0x7f95b22609b0 <col:15, col:16> 'NSString *' | | `-StringLiteral 0x7f95b2260978 <col:16> 'char [14]' lvalue "Hello, World!" | `-ReturnStmt 0x7f95b2260ad0 <line:16:5, col:12> | `-IntegerLiteral 0x7f95b2260ab0 <col:12> 'int' 0 `-<undeserialized declarations>
2.1.5 生成IR(intermediate representation)
这一步CodeGen会自顶向下遍历AST,产出中间层,也就是IR
clang -S -fobjc-arc -emit-llvm ClangTest/main.m -o main.ll
; ModuleID = 'ClangTest/main.m' source_filename = "ClangTest/main.m" target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" target triple = "x86_64-apple-macosx10.14.0" %struct.__NSConstantString_tag = type { i32*, i32, i8*, i64 } @__CFConstantStringClassReference = external global [0 x i32] @.str = private unnamed_addr constant [14 x i8] c"Hello, World!\00", section "__TEXT,__cstring,cstring_literals", align 1 @_unnamed_cfstring_ = private global %struct.__NSConstantString_tag { i32* getelementptr inbounds ([0 x i32], [0 x i32]* @__CFConstantStringClassReference, i32 0, i32 0), i32 1992, i8* getelementptr inbounds ([14 x i8], [14 x i8]* @.str, i32 0, i32 0), i64 13 }, section "__DATA,__cfstring", align 8 ; Function Attrs: noinline optnone ssp uwtable define i32 @main(i32, i8**) #0 { %3 = alloca i32, align 4 %4 = alloca i32, align 4 %5 = alloca i8**, align 8 store i32 0, i32* %3, align 4 store i32 %0, i32* %4, align 4 store i8** %1, i8*** %5, align 8 %6 = call i8* @objc_autoreleasePoolPush() #2 notail call void (i8*, ...) @NSLog(i8* bitcast (%struct.__NSConstantString_tag* @_unnamed_cfstring_ to i8*)) call void @objc_autoreleasePoolPop(i8* %6) ret i32 0 } declare i8* @objc_autoreleasePoolPush() declare void @NSLog(i8*, ...) #1 declare void @objc_autoreleasePoolPop(i8*) attributes #0 = { noinline optnone ssp uwtable "correctly-rounded-divide-sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-jump-tables"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="penryn" "target-features"="+cx16,+fxsr,+mmx,+sahf,+sse,+sse2,+sse3,+sse4.1,+ssse3,+x87" "unsafe-fp-math"="false" "use-soft-float"="false" } attributes #1 = { "correctly-rounded-divide-sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="penryn" "target-features"="+cx16,+fxsr,+mmx,+sahf,+sse,+sse2,+sse3,+sse4.1,+ssse3,+x87" "unsafe-fp-math"="false" "use-soft-float"="false" } attributes #2 = { nounwind } !llvm.module.flags = !{!0, !1, !2, !3, !4, !5, !6, !7} !llvm.ident = !{!8} !0 = !{i32 2, !"SDK Version", [2 x i32] [i32 10, i32 14]} !1 = !{i32 1, !"Objective-C Version", i32 2} !2 = !{i32 1, !"Objective-C Image Info Version", i32 0} !3 = !{i32 1, !"Objective-C Image Info Section", !"__DATA,__objc_imageinfo,regular,no_dead_strip"} !4 = !{i32 4, !"Objective-C Garbage Collection", i32 0} !5 = !{i32 1, !"Objective-C Class Properties", i32 64} !6 = !{i32 1, !"wchar_size", i32 4} !7 = !{i32 7, !"PIC Level", i32 2} !8 = !{!"Apple LLVM version 10.0.1 (clang-1001.0.46.4)"}
2.1.6 查看生成的汇编代码
clang -S -fobjc-arc ClangTest/main.m -o main.s
.section __TEXT,__text,regular,pure_instructions .build_version macos, 10, 14 sdk_version 10, 14 .globl _main ## -- Begin function main .p2align 4, 0x90 _main: ## @main .cfi_startproc ## %bb.0: pushq %rbp .cfi_def_cfa_offset 16 .cfi_offset %rbp, -16 movq %rsp, %rbp .cfi_def_cfa_register %rbp subq $32, %rsp movl $0, -4(%rbp) movl %edi, -8(%rbp) movq %rsi, -16(%rbp) callq _objc_autoreleasePoolPush leaq L__unnamed_cfstring_(%rip), %rsi movq %rsi, %rdi movq %rax, -24(%rbp) ## 8-byte Spill movb $0, %al callq _NSLog movq -24(%rbp), %rdi ## 8-byte Reload callq _objc_autoreleasePoolPop xorl %eax, %eax addq $32, %rsp popq %rbp retq .cfi_endproc ## -- End function .section __TEXT,__cstring,cstring_literals L_.str: ## @.str .asciz "Hello, World!" .section __DATA,__cfstring .p2align 3 ## @_unnamed_cfstring_ L__unnamed_cfstring_: .quad ___CFConstantStringClassReference .long 1992 ## 0x7c8 .space 4 .quad L_.str .quad 13 ## 0xd .section __DATA,__objc_imageinfo,regular,no_dead_strip L_OBJC_IMAGE_INFO: .long 0 .long 64 .subsections_via_symbols
2.1.7 生成目标文件
clang -fmodules -c ClangTest/main.m -o main.o
2.1.8 生成可执行文件
clang main.o -o main
2.1.9 运行
./main
以这个例子来说,虽然我们一行代码都没有写,但是看得出来,编译器为我们做的事情可不少。
三、Clang实战
说了这么多,接下来我想在编译器中添加一个插件,打印工程中所有的方法名
下面我们从官网下载并编译最新的Clang
3.1 编译源码
1、下载源码 git clone https://github.com/llvm/llvm-... 2、创建build目录 cd llvm-project && mkdir build && cd build 3、编译源码 cmake -DLLVM_ENABLE_PROJECTS=clang -G "Unix Makefiles" ../llvm 4、cmake -build . 5、make clang
3.2 测试是否成功
输入
./bin/clang-9 --version
正常输出clang就没什么问题了
3.3 替换Xcode的Clang
还是用刚才那个ClangTest工程,这里我们要替换掉Xcode使用的Clang为我们自己编译的版本
点击工程,找到Build Settings,点击加号,选择 Add User-Defined settings
添加如下两条
- CC /Users/felix/Documents/llvm-project/build/bin/clang-9
- CXX /Users/felix/Documents/llvm-project/build/bin/clang-9
将路径替换为你编译文件的路径
然后搜索Enable Index-While-Building Functionality ,将值更改为No
接下来可以Command+B进行编译
3.4 Clang Plugin
下面来开发我们的第一个插件,打印所有的方法名
3.4.1 编写第一个CLang插件
首先,进入 llvm-project/clang/examples, 创建新文件夹,命名为Find
在Find下新建两个文件 DemoPlugin.cpp、CMakeLists.txt
打开 llvm-project/clang/examples/CMakeLists.txt,在文件末尾追加
add_subdirectory(DemoPlugin)
现在让我们编辑Find插件,
CMakeLists.txt # If we don't need RTTI or EH, there's no reason to export anything # from the plugin. if( NOT MSVC ) # MSVC mangles symbols differently, and # PrintFunctionNames.export contains C++ symbols. if( NOT LLVM_REQUIRES_RTTI ) if( NOT LLVM_REQUIRES_EH ) set(LLVM_EXPORTED_SYMBOL_FILE ${CMAKE_CURRENT_SOURCE_DIR}/DemoPlugin.exports) endif() endif() endif() add_llvm_library(DemoPlugin MODULE DemoPlugin.cpp PLUGIN_TOOL clang) if(LLVM_ENABLE_PLUGINS AND (WIN32 OR CYGWIN)) target_link_libraries(DemoPlugin PRIVATE clangAST clangBasic clangFrontend LLVMSupport ) endif()
DemoPlugin.cpp #include "clang/Frontend/FrontendPluginRegistry.h" #include "clang/AST/AST.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/Frontend/CompilerInstance.h" using namespace clang; namespace { // 可以深度优先搜索整个AST,并访问每一个基类,遍历需要处理的节点 class DemoPluginVisitor : public RecursiveASTVisitor<DemoPluginVisitor> { private: CompilerInstance &Instance; ASTContext *Context; public: void setASTContext (ASTContext &context) { this -> Context = &context; } DemoPluginVisitor (CompilerInstance &Instance) :Instance(Instance) {} // 查找类名 bool VisitObjCInterfaceDecl(ObjCInterfaceDecl *declaration) { if(isUserSourceCode(declaration)) { DiagnosticsEngine &D = Instance.getDiagnostics(); unsigned diagID = D.getCustomDiagID(DiagnosticsEngine::Warning, "查找到一个类名: %0"); D.Report(declaration->getBeginLoc(), diagID) << declaration->getName(); } return true; } // 查找方法名 bool VisitObjCMethodDecl(ObjCMethodDecl *declaration) { if(isUserSourceCode(declaration)) { DiagnosticsEngine &D = Instance.getDiagnostics(); unsigned diagID = D.getCustomDiagID(DiagnosticsEngine::Warning, "查找到一个方法名: %0"); // D.Report(declaration->getLocStart(), diagID).AddString(declaration->getSelector().getAsString()); D.Report(declaration->getBeginLoc(), diagID) << declaration->getSelector().getAsString(); } return true; } // 是否用户代码 bool isUserSourceCode (Decl *decl){ std::string filename = Instance.getSourceManager().getFilename(decl->getSourceRange().getBegin()).str(); if (filename.empty()) return false; // 定义非Xcode中的源码都是用户源码 if(filename.find("/Applications/Xcode.app/") == 0) return false; return true; } }; class DemoPluginConsumer : public ASTConsumer { private: DemoPluginVisitor visitor; CompilerInstance &Instance; std::set<std::string> ParsedTemplates; public: DemoPluginConsumer(CompilerInstance &Instance, std::set<std::string> ParsedTemplates) : Instance(Instance), ParsedTemplates(ParsedTemplates), visitor(Instance) {} // 每次分析到一个顶层定义时会回调此函数,返回true表示处理 bool HandleTopLevelDecl(DeclGroupRef DG) override { return true; } // ASTConsumer的入口函数 void HandleTranslationUnit(ASTContext& context) override { visitor.setASTContext(context); visitor.TraverseDecl(context.getTranslationUnitDecl()); } }; class DemoPluginASTAction : public PluginASTAction { std::set<std::string> ParsedTemplates; protected: std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI, llvm::StringRef) override { return llvm::make_unique<DemoPluginConsumer>(CI, ParsedTemplates); } // 插件的入口函数 bool ParseArgs(const CompilerInstance &CI, const std::vector<std::string> &args) override { return true; } }; } static clang::FrontendPluginRegistry::Add<DemoPluginASTAction> X("DemoPlugin", "demo plugin");
3.4.2 加载插件
首先,我们需要编译插件,
cmake -DLLVM_ENABLE_PROJECTS=clang -G "Unix Makefiles" ../llvm make DemoPlugin
编译成功后我们可以在 build的lib 目录下找到 DemoPlugin.dylib
在工程中加入配置 Other C Flags ,加入以下配置
-Xclang -load -Xclang /Users/felix/Documents/llvm-project/build/lib/DemoPlugin.dylib -Xclang -add-plugin -Xclang DemoPlugin
3.5 调试
下面我们就可以开始编译工程了,可以看到每个方法名和类名都被找到拉