pyqtSignal()

class GUI_progressBar(QWidget)
QWidget是所有用户界面对象的基类
class GUI_progressBar(QWidget):
    #声明无参数的信号
    close = pyqtSignal()
    #声明一个带参数的信号
    model = pyqtSignal(SSD) #SSD为class SSD(nn.Module)

         

class SSD(nn.Module):
    """Single Shot Multibox Architecture
    The network is composed of a base VGG network followed by the
    added multibox conv layers.  Each multibox layer branches into
        1) conv2d for class conf scores
        2) conv2d for localization predictions
        3) associated priorbox layer to produce default bounding
           boxes specific to the layer's feature map size.
    See: https://arxiv.org/pdf/1512.02325.pdf for more details.

    Args:
        phase: (string) Can be "test" or "train"
        size: input image size
        base: VGG16 layers for input, size of either 300 or 500
        extras: extra layers that feed to multibox loc and conf layers
        head: "multibox head" consists of loc and conf conv layers
    """

    def __init__(self, phase, size, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.cfg = (coco, voc)[num_classes == 2]
        self.priorbox = PriorBox(self.cfg)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = size

        # SSD network
        self.resnet18 = ResNet(BasicBlock, [2, 2, 2, 2], 3)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        # FPN

        self.p3_lateral = nn.Conv2d(128, 256, kernel_size=1, stride=1, padding=0, bias=False)
        self.p4_lateral = nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0, bias=False)
        self.p5_lateral = nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0)
        self.p7_lateral = nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0)
        self.p8_lateral = nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)

        # smooth
        self.p3_smooth = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.p4_smooth = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.p5_smooth = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.p7_smooth = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.p8_smooth = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)

        # detect
        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if phase == 'test':
            self.softmax = nn.Softmax(dim=-1)
            self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)


    def _upsample_add(self, x, y):
        _,_,H,W = y.size()
        return F.upsample(x, size=(H,W), mode='bilinear') + y


    def forward(self, x):
        """Applies network layers and ops on input image(s) x.

        Args:
            x: input image or batch of images. Shape: [batch,3,300,300].

        Return:
            Depending on phase:
            test:
                Variable(tensor) of output class label predictions,
                confidence score, and corresponding location predictions for
                each object detected. Shape: [batch,topk,7]

            train:
                list of concat outputs from:
                    1: confidence layers, Shape: [batch*num_priors,num_classes]
                    2: localization layers, Shape: [batch,num_priors*4]
                    3: priorbox layers, Shape: [2,num_priors*4]
        """
        sources = list()
        loc = list()
        conf = list()

        x = self.resnet18.maxpool(self.resnet18.relu(self.resnet18.bn1(self.resnet18.conv1(x))))
        res2b = self.resnet18.layer1(x)
        res3b = self.resnet18.layer2(res2b)
        res4b = self.resnet18.layer3(res3b)
        res5b = self.resnet18.layer4(res4b)

        # apply extra layers and cache source layer outputs
        c = list()
        x = res5b
        for k, v in enumerate(self.extras):
            x = F.relu(v(x), inplace=True)
            if k % 2 == 1:
                c.append(x)
        c7 = c[0]
        c8 = c[1]
        c9 = c[2]

        # FPN
        p8 = self._upsample_add(c9, self.p8_lateral(c8))
        p7 = self._upsample_add(p8, self.p7_lateral(c7))
        p5 = self._upsample_add(p7, self.p5_lateral(res5b))
        p4 = self._upsample_add(p5, self.p4_lateral(res4b))
        p3 = self._upsample_add(p4, self.p3_lateral(res3b))

        # smooth
        p8 = self.p8_smooth(p8)
        p7 = self.p8_smooth(p7)
        p5 = self.p8_smooth(p5)
        p4 = self.p8_smooth(p4)
        p3 = self.p8_smooth(p3)

        sources = [p3, p4, p5, p7, p8, c9]

        # apply multibox head to source layers
        for (x, l, c) in zip(sources, self.loc, self.conf):
            loc.append(l(x).permute(0, 2, 3, 1).contiguous())
            conf.append(c(x).permute(0, 2, 3, 1).contiguous())

        loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
        conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
        if self.phase == "test":
            output = self.detect(
                loc.view(loc.size(0), -1, 4),                   # loc preds
                self.softmax(conf.view(conf.size(0), -1,
                             self.num_classes)),                # conf preds
                self.priors.type(type(x.data))                  # default boxes
            )
        else:
            output = (
                loc.view(loc.size(0), -1, 4),
                conf.view(conf.size(0), -1, self.num_classes),
                self.priors
            )
        return output

    def load_weights(self, base_file):
        other, ext = os.path.splitext(base_file)
        if ext == '.pkl' or '.pth':
            print('Loading weights into state dict...')
            self.load_state_dict(torch.load(base_file,
                                 map_location=lambda storage, loc: storage))
            print('Finished!')
        else:
            print('Sorry only .pth and .pkl files supported.')

 

 

 

上一篇:什么是SAAS——软件即服务


下一篇:暴力删除grid