KafkaProducer是Kafka中Producer的一种实现,其主要功能就是发送消息给Kafka中broker。其send()方法如下:
/** * Asynchronously send a record to a topic. Equivalent to <code>send(record, null)</code>. * See {@link #send(ProducerRecord, Callback)} for details. */ @Override public Future<RecordMetadata> send(ProducerRecord<K, V> record) { return send(record, null); }再看两个参数的send()方法,代码如下:
/** * Asynchronously send a record to a topic and invoke the provided callback when the send has been acknowledged. * <p> * The send is asynchronous and this method will return immediately once the record has been stored in the buffer of * records waiting to be sent. This allows sending many records in parallel without blocking to wait for the * response after each one. * <p> * The result of the send is a {@link RecordMetadata} specifying the partition the record was sent to and the offset * it was assigned. * <p> * Since the send call is asynchronous it returns a {@link java.util.concurrent.Future Future} for the * {@link RecordMetadata} that will be assigned to this record. Invoking {@link java.util.concurrent.Future#get() * get()} on this future will block until the associated request completes and then return the metadata for the record * or throw any exception that occurred while sending the record. * <p> * If you want to simulate a simple blocking call you can call the <code>get()</code> method immediately: * * <pre> * {@code * byte[] key = "key".getBytes(); * byte[] value = "value".getBytes(); * ProducerRecord<byte[],byte[]> record = new ProducerRecord<byte[],byte[]>("my-topic", key, value) * producer.send(record).get(); * }</pre> * <p> * Fully non-blocking usage can make use of the {@link Callback} parameter to provide a callback that * will be invoked when the request is complete. * * <pre> * {@code * ProducerRecord<byte[],byte[]> record = new ProducerRecord<byte[],byte[]>("the-topic", key, value); * producer.send(myRecord, * new Callback() { * public void onCompletion(RecordMetadata metadata, Exception e) { * if(e != null) * e.printStackTrace(); * System.out.println("The offset of the record we just sent is: " + metadata.offset()); * } * }); * } * </pre> * * Callbacks for records being sent to the same partition are guaranteed to execute in order. That is, in the * following example <code>callback1</code> is guaranteed to execute before <code>callback2</code>: * * <pre> * {@code * producer.send(new ProducerRecord<byte[],byte[]>(topic, partition, key1, value1), callback1); * producer.send(new ProducerRecord<byte[],byte[]>(topic, partition, key2, value2), callback2); * } * </pre> * <p> * Note that callbacks will generally execute in the I/O thread of the producer and so should be reasonably fast or * they will delay the sending of messages from other threads. If you want to execute blocking or computationally * expensive callbacks it is recommended to use your own {@link java.util.concurrent.Executor} in the callback body * to parallelize processing. * * @param record The record to send * @param callback A user-supplied callback to execute when the record has been acknowledged by the server (null * indicates no callback) * * @throws InterruptException If the thread is interrupted while blocked * @throws SerializationException If the key or value are not valid objects given the configured serializers * @throws BufferExhaustedException If <code>block.on.buffer.full=false</code> and the buffer is full. * */ @Override public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) { try { // first make sure the metadata for the topic is available // 首先确保该主题topic对应的元数据metadata是可用的 long waitedOnMetadataMs = waitOnMetadata(record.topic(), this.maxBlockTimeMs); // 计算剩余等待时间remainingWaitMs long remainingWaitMs = Math.max(0, this.maxBlockTimeMs - waitedOnMetadataMs); // 得到序列化key:serializedKey byte[] serializedKey; try { // 根据record中topic、key,利用valueSerializer得到序列化key:serializedKey serializedKey = keySerializer.serialize(record.topic(), record.key()); } catch (ClassCastException cce) { throw new SerializationException("Can't convert key of class " + record.key().getClass().getName() + " to class " + producerConfig.getClass(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG).getName() + " specified in key.serializer"); } // 得到序列化value:serializedValue byte[] serializedValue; try { // 根据record中topic、value,利用valueSerializer得到序列化value:serializedValue serializedValue = valueSerializer.serialize(record.topic(), record.value()); } catch (ClassCastException cce) { throw new SerializationException("Can't convert value of class " + record.value().getClass().getName() + " to class " + producerConfig.getClass(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG).getName() + " specified in value.serializer"); } // 调用partition()方法获得分区号partition int partition = partition(record, serializedKey, serializedValue, metadata.fetch()); // 计算序列化后的key、value及其offset、size所占大小serializedSize int serializedSize = Records.LOG_OVERHEAD + Record.recordSize(serializedKey, serializedValue); // 确保记录大小serializedSize是有效的 ensureValidRecordSize(serializedSize); // 根据record中的topic和partition构造TopicPartition实例tp TopicPartition tp = new TopicPartition(record.topic(), partition); log.trace("Sending record {} with callback {} to topic {} partition {}", record, callback, record.topic(), partition); // 调用accumulator的append()方法添加记录,获得记录添加结果RecordAppendResult类型的result RecordAccumulator.RecordAppendResult result = accumulator.append(tp, serializedKey, serializedValue, callback, remainingWaitMs); // 根据结果result的batchIsFull或newBatchCreated确定是否执行sender的wakeup() if (result.batchIsFull || result.newBatchCreated) { log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition); this.sender.wakeup(); } // 返回result中的future return result.future; // handling exceptions and record the errors; // for API exceptions return them in the future, // for other exceptions throw directly } catch (ApiException e) { log.debug("Exception occurred during message send:", e); if (callback != null) callback.onCompletion(null, e); this.errors.record(); return new FutureFailure(e); } catch (InterruptedException e) { this.errors.record(); throw new InterruptException(e); } catch (BufferExhaustedException e) { this.errors.record(); this.metrics.sensor("buffer-exhausted-records").record(); throw e; } catch (KafkaException e) { this.errors.record(); throw e; } }其大体逻辑如下:
1、首先调用waitOnMetadata()方法确保该主题topic对应的元数据metadata是可用的;
2、计算剩余等待时间remainingWaitMs;
3、根据record中topic、key,利用valueSerializer得到序列化key:serializedKey;
4、根据record中topic、value,利用valueSerializer得到序列化value:serializedValue;
5、调用partition()方法获得分区号partition;
6、计算序列化后的key、value及其offset、size所占大小serializedSize;
7、调用ensureValidRecordSize()方法确保记录大小serializedSize是有效的;
8、根据record中的topic和partition构造TopicPartition实例tp;
9、调用accumulator的append()方法添加记录,获得记录添加结果RecordAppendResult类型的result;
10、根据结果result的batchIsFull或newBatchCreated确定是否执行sender的wakeup();
11、返回result中的future。