小蚂蚁说:
国际机器学习大会ICML 2018 于 7 月 10 日在瑞典斯德哥尔摩召开。这场学术大会于1980年首次在匹兹堡举行,今年已是第 35 届,和 NIPS(神经信息处理系统大会)并列为机器学习学术界最*的会议。
有人整理了ICML 2018 收录的论文数量,发现赢家依旧是大家的“老朋友”:前列的均为美国院校,而头把交椅的Google 也有多篇论文收录。目前越来越多来自工业界的研究力量屡屡出席行业*会议,这也表明越来越多的*科技公司愿意在前沿学术学术研究上投入资源。蚂蚁金服也是其中之一。
今年,蚂蚁金服以独立身份参加ICML,为大会奉献了八篇论文,本文将给大家带来分享。
引言
随着机器学习热度的增加和其中“中国力量”的逐渐强大,在各大*会议上有越来越多的中国组织排名靠前,大有争夺头把交椅的势头。
比如,本次ICML,清华大学有 12 篇论文被收录;华裔作者的数量也令人惊讶,如佐治亚理工学院终身副教授、机器学习中心副主任宋乐署名的就有8篇论文。
而宋乐教授的另外一个身份,就是蚂蚁金服人工智能部研究员。
蚂蚁金服成为ICML 上“中国力量”的代表之一,为大会奉献了8篇论文。其中,六篇含金量十足的Oral Paper,成为议程上研讨会的主角,接受与会专家的热烈讨论。
这些论文几乎每篇署名作者都有世界级学术专家。比如人工智能教父,蚂蚁金服科学智囊团主席迈克尔·欧文·乔丹 (Michael I. Jordan),以及上面提到的佐治亚理工学院机器学习中心副主任,在蚂蚁金服人工智能部担任研究员的宋乐教授等。
不仅如此,蚂蚁金服还在本届大会上展示了多项核心技术和产品:基于强大的深度学习能力开发的定损宝、自研的图结构处理Graph Embedding 技术,以及基于图像处理和自然语言理解技术开发的智能客服等。特别是定损宝,将图像识别技术和车险领域首次结合,每年有望为中国保险公司节约数十亿元人民币成本,备受参与ICML 2018 的业界人士关注。
和*学术界人才深度合作,凸显蚂蚁金服在机器学习方面的能力,而将学术成就快速转化为商业级产品更是证明了蚂蚁金服的的决心——人才的吸引力和学术商用的两手并重,让首次参会的蚂蚁金服就成为了这场*学术会议上的耀眼新星。
用先进的人工智能,解决真实世界难题
深度学习如此热火朝天,最大的原因在于它可以被训练用于解决真实世界的问题。比如社交网络的用户之间存在着多维关系,而地铁线路也存在复杂和不规则的连接。如何将可能有着相同社交圈的用户连接在一起,如何用安排最优的导航路线,在过去靠经验和复杂的计算,在今天需要深度学习。
和社交网络、地铁线路类似,金融数据也是图结构,但又不完全相同。由于蚂蚁金服为上亿级的个人用户提供服务,产生的金融数据从一开始就是海量且极其复杂的。即便是此前最先进的Graph Embedding 技术,处理金融级的图结构仍有压力。(Graph Embedding = 图嵌入向量空间,一种图结构深度学习的方法。)
这成为了学术界和业界所面临的共同难题。
在ICML 2018 上,蚂蚁金服提出了一个新解法,用提交的几篇论文形成一个完整的思路:
首先,蚂蚁金服的研究人员设计了一个新的图形卷积网络模型;然后,他们设计出新的特征传播方法和剪枝技术,让神经网络中不断传递的计算结果越来越准确,消除无用的传递;然后,他们设计了一种对抗攻击的方式以挑战模型,进而提高准确度;最后,研究者整理了之前的思路,再设计出一种能够将研究成果泛化的机制,针对真实世界里不同的问题,快速教育并生成新模型。
这一组六篇论文所提出方法的主要意义,在于处理金融领域的图结构数据时效率很高,显著强于业界之前在Graph Embedding 方面的最优解。这种深度学习处理图结构的方法,在真实世界中可以被用于系统性风险的监测预测,显著降低风控成本,提升系统的安全性——而这正是金融科技企业的立命之本。
蚂蚁金服在ICML 2018 上展示的另一个核心产品定损宝 2.0,背后同样是当前最先进的深度学习技术。它的功能是当发生车辆事故时,用户拍照上传即可快速定损,这一技术可以整合到第三方保险公司的手机应用里。
功能很简单,原理却极其复杂,因为定损的不是保险公司的客服或定损人员,而是深度学习图像处理算法。它首先要找到不起眼的磕碰位置,也就是找到问题在哪里;然后要能够将发现的所有异样结合起来,给出一个综合的定损结果,甚至要能做出小碰小修、大碰换新的建议,也就是需要强大和高弹性的模式识别能力。
让问题复杂化的在于照片本身分多样性。并不是每一张照片都非常标准和清晰,有的太暗,有的因为打了手电筒反而出现强反光,在定损宝里就需要在底层的深度神经网络上设计消噪。
对于蚂蚁金服的世界级研究团队来说,这些难题并非不能解决。去年上线之后,定损宝已经整合到了太平、大地、阳光等保险公司的服务中,在一年时间里节约了定损员75万小时的工作量,人工和系统成本约合20亿元人民币。
定损宝2.0 版本从人工判断全面升级为人工智能定损,缩短了时间并提高了准确率,而且降低了使用者的专业度,车主自己就可以成为定损员。
“为了让普通车主随手拍也能达到专业效果,我们应用了大量新技术,其中专利数就达到了46 项,”蚂蚁金服保险事业群副总裁李冠如表示,这个专利数比 1.0 版多了一倍。
如无意外,定损宝2.0也将全面升级为开放平台,保险公司可以自行开发产品然后接入API。这一设定将鼓励更多中小保险公司涉足车险业务,为企业和消费者创造价值。这也是蚂蚁金服称这些技术为“暖科技”,而不是“黑科技”的原因所在。因为这些技术并不仅仅是酷炫,更重要的是能让世界变得更好。
技术出海,靠技术也靠人才
蚂蚁金服在ICML 2018 上一鸣惊人,不仅看收录的论文和展示的技术,还要谁是它们的幕后英雄。
邀请知名学者加盟担任高级顾问是科技行业的通用做法,Google、微软、Facebook 等美国公司都是通过这样的方式加速人工智能研究和投入商用。而和蚂蚁金服牵手的,正是被称为人工智能教父的迈克尔·欧文·乔丹。
乔丹教授是美国科学院、工程院以及艺术与科学院的三院院士——得到这一成就者本就寥寥,而乔丹是计算机科学领域唯一获得该成就的学者。他目前在美国加州大学伯克利分校担任电气工程、计算机和统计学教授,学生也有许多圈内同样知名的学者,如前百度首席科学家吴恩达,以及成为微软人工智能顾问的蒙特利尔大学教授约书亚·本吉奥(Yoshua Bengio)。
去年签约成为蚂蚁金服科学智能团主席和技术顾问时,乔丹给了蚂蚁金服颇高的评价,他认为公司应该用技术和数据让普通人的生活变的更好,而蚂蚁金服自创立以来长期秉持的金融平等愿景,符合他的定义。
一年后,双方的合作已经开花结果。在本次ICML 2018 收录的论文《Learning to Explain: An information-TheoreticPerspective on Model Interpretation》正是由蚂蚁金服牵头,论文的署名作者中就有乔丹,以及他在伯克利的同事和学生。
另一位近年来在深度学习领域发布了大量论文的专家,名字也出现在了蚂蚁金服本届ICML 提交的几乎所有论文当中。他就是近年来频繁出现在各大人工智能*会议上,大量发表顶尖学术成果的宋乐教授。
宋乐教授任教于美国最优秀理工类院校之一的佐治亚理工学院,担任计算机系终身副教授,并领导着该校的机器学习中心。他本科毕业于华南理工大学,在悉尼大学和澳大利亚信息通讯技术中心获得了博士学位,随后前往卡耐基梅隆大学担任学者,也曾在Google Research(现 Google AI)做过一段时间科学家。
和乔丹一样,宋乐认可蚂蚁金服正在做的事情。他在去年加盟蚂蚁金服,担任人工智能部研究员,领导深度学习、强化学习和可解释性模型方面的研究。
和其他机构对于技术出海的定义不同,在蚂蚁金服看来,学术人才应该成为技术出海的奠基者和见证人,出海的一个重要目标应该是和全球的学术界专家和受众建立合作。吸取和输出同样重要。
除了这些专家,蚂蚁金服还跟其他*学术机构和人士建立了合作。比如2016 年,蚂蚁金服跟清华大学交叉信息研究院院长、图灵奖唯一华人获得者姚期智合作,组建了数字金融科技联合实验室;MIT FinTech实验室中,蚂蚁金服是创始成员中唯一一家中国公司;美国*旗下国家科学基金会和加州大学伯克利分校共同组建的 RISE 实验室中,蚂蚁金服和阿里巴巴也是创始成员。
蚂蚁金服认为,想要在金融领域输出创新,全球的学术交流是必要前提。
发论文只是途径,目的是把金融平等带给世界上的每个人
此次蚂蚁金服在ICML上发表的论文在这场全球*学术会议上引起了很大反响。各国学者和业界代表挤满了展台,了解定损宝2.0、Graph Embedding 和智能客服等技术。
但一切只是开始,论文只是蚂蚁金服和学术界交流的途径,像其他机构一样刷论文并不是终极目的。对蚂蚁金服而言,在*学术会议上发布论文,有两方面的意义,一个是推进人工智能最前沿研究的发展,同时紧密地把学术与应用场景结合起来。而蚂蚁金服拥有海量的应用场景,这些技术从研究到落地能够真正造福数以亿计的用户,真正为世界带来平等的机会。
蚂蚁金服认为,工业界可以和学术界展开更多合作,因为业界有更多的数据、更大的问题和更难的挑战。而这种合作不仅可以让技术落地,还可以反哺、发展技术。
因为做技术并非它本身的目的。用技术去解决真正的问题、产生有意义的服务,用科技的力量,让人们能够享受到平等便利的金融服务,才是蚂蚁金服的使命和梦想:
- 2014年,珠峰大本营,探险者苦于现金找零的麻烦,开始使用支付宝结算。后来,二维码出现在了珠峰大本营几乎每一顶帐篷前;
- 中国的中小业主往往享受不到便利、合规的金融服务。一个奶牛养殖户在蚂蚁金服的帮助下贷款解决了资金周转,让一家人能够吃饱饭,还扩大了养殖规模;
- 2015年功能上线的刷脸支付,一年时间服务了超过2亿用户。这个已经习以为常的功能,对于60岁的退休职工王燕玲并不普通,因为她再也不用翻箱倒柜找密码了;
- 在蚂蚁金服的产品体系中,蚂蚁金服是个独特的存在,用户每一笔线下支付都会积累一点能量,到达一定程度就可以种下一棵树,截至目前已经种了超过1000 万颗树——跟长城不一样,这片森林在卫星上确实看得见。
这样的例子还有很多。蚂蚁金服希望进一步携手高校和学术届人才,让技术创新快速商业化并反哺技术进步;让城市或山区,让年长或年幼,让富有或贫穷的人之间,鸿沟不断消弭。这也便是蚂蚁金服所信奉和追求的普惠愿景。一起加入我们吧,让技术,无远弗届。