volatile这个关键字可能很多朋友都听说过,或许也都用过。在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果。在Java 5之后,volatile关键字才得以重获生机。
volatile关键字虽然从字面上理解起来比较简单,但是要用好不是一件容易的事情。讲解volatile 之前, 我们先来了解了解并发编程中的三大特效,java内存模型
一. 并发编程中的三大特效(要想程序正确执行, 三者缺一不可)
1、原子性
原子性:即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。(类似于ACID中的一致性)
2、可见性
可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。
3、有序性
有序性:即程序执行的顺序按照代码的先后顺序执行
指令重排序: 一般来说,处理器为了提高程序运行效率,可能会对输入代码进行优化,它不保证程序中各个语句的执行先后顺序同代码中的顺序一致,但是它会保证程序最终执行结果和代码顺序执行的结果是一致的
Java内存模型具备一些先天的“有序性”,即不需要通过任何手段就能够得到保证的有序性,这个通常也称为 happens-before 原则。如果两个操作的执行次序无法从happens-before原则推导出来,那么它们就不能保证它们的有序性,虚拟机可以随意地对它们进行重排序。
下面就来具体介绍下happens-before原则(先行发生原则):
- 程序次序规则:一个线程内,按照代码顺序,书写在前面的操作先行发生于书写在后面的操作
- 锁定规则:一个unLock操作先行发生于后面对同一个锁额lock操作
- volatile变量规则:对一个变量的写操作先行发生于后面对这个变量的读操作
- 传递规则:如果操作A先行发生于操作B,而操作B又先行发生于操作C,则可以得出操作A先行发生于操作C
- 线程启动规则:Thread对象的start()方法先行发生于此线程的每个一个动作
- 线程中断规则:对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生
- 线程终结规则:线程中所有的操作都先行发生于线程的终止检测,我们可以通过Thread.join()方法结束、Thread.isAlive()的返回值手段检测到线程已经终止执行
- 对象终结规则:一个对象的初始化完成先行发生于他的finalize()方法的开始
这8条原则摘自《深入理解Java虚拟机》。这8条规则中,前4条规则是比较重要的,后4条规则都是显而易见的。
下面我们来解释一下前4条规则:
对于程序次序规则来说,我的理解就是一段程序代码的执行在单个线程中看起来是有序的。注意,虽然这条规则中提到“书写在前面的操作先行发生于书写在后面的操作”,这个应该是程序看起来执行的顺序是按照代码顺序执行的,因为虚拟机可能会对程序代码进行指令重排序。虽然进行重排序,但是最终执行的结果是与程序顺序执行的结果一致的,它只会对不存在数据依赖性的指令进行重排序。因此,在单个线程中,程序执行看起来是有序执行的,这一点要注意理解。事实上,这个规则是用来保证程序在单线程中执行结果的正确性,但无法保证程序在多线程中执行的正确性。
第二条规则也比较容易理解,也就是说无论在单线程中还是多线程中,同一个锁如果出于被锁定的状态,那么必须先对锁进行了释放操作,后面才能继续进行lock操作。
第三条规则是一条比较重要的规则,也是后文将要重点讲述的内容。直观地解释就是,如果一个线程先去写一个变量,然后一个线程去进行读取,那么写入操作肯定会先行发生于读操作。
第四条规则实际上就是体现happens-before原则具备传递性。
二. java内存模型
1、内存模型
大家都知道,计算机在执行程序时,每条指令都是在CPU中执行的,而执行指令过程中,势必涉及到数据的读取和写入。由于程序运行过程中的临时数据是存放在主存(物理内存)当中的,这时就存在一个问题,由于CPU执行速度很快,而从内存读取数据和向内存写入数据的过程跟CPU执行指令的速度比起来要慢的多,因此如果任何时候对数据的操作都要通过和内存的交互来进行,会大大降低指令执行的速度。因此在CPU里面就有了高速缓存。
也就是,当程序在运行过程中,会将运算需要的数据从主存复制一份到CPU的高速缓存当中,那么CPU进行计算时就可以直接从它的高速缓存读取数据和向其中写入数据,当运算结束之后,再将高速缓存中的数据刷新到主存当中
2.、什么是Java内存模型
Java虚拟机规范中试图定义一种Java内存模型(Java Memory Model,JMM)来屏蔽掉各种硬件和操作系统的访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果。在此之前,主流程序语言(如C/C++等)直接使用物理硬件和操作系统的内存模型,因此,会由于不同平台上内存模型的差异,有可能导致程序在一套平台上并发完全正常,而在另外一套平台上并发访问却经常出错,因此在某些场景下就不许针对不同的平台来编写程序。
Java内存模型即要定义得足够严谨,才能让Java的并发内存访问操作不会产生歧义;Java内存模型也必须定义地足够宽松,才能使得虚拟机的实现有足够的*空间去利用硬件的各种特性来获取更好的执行速度。经过长时间的验证和修补,JDK1.5(实现了JSR-133)发布之后,Java内存模型已经成熟和完善起来了,一起来看一下。
3、主内存和工作内存
Java内存模型的主要目的是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节。注意一下,此处的变量并不包括局部变量与方法参数,因为它们是线程私有的,不会被共享,自然也不会存在竞争,此处的变量应该是实例字段、静态字段和构成数组对象的元素。
Java内存模型中规定了所有的变量都存储在主内存中(如虚拟机物理内存中的一部分),每条线程还有自己的工作内存(如CPU中的高速缓存),线程的工作内存中保存了该线程使用到的变量到主内存的副本拷贝,线程对变量的所有操作(读取、赋值)都必须在工作内存中进行,而不能直接读写主内存中的变量。不同线程之间无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成,线程、主内存和工作内存的交互关系如下图所示:
内存模型跟java内存模型类似, CPU主内存相对应主内存, CPU高速缓存相对应java内存模型线程中的工作内存
缓存一致性问题:
多线程中会有, 例如所有内存中数据都为0,多线程进行+1操作. 线程1进行+1操作, 写入工作内存, 主内存中. 这时候线程1的工作内存为1, 主内存也为1. 线程2再去写操作, 如果正确执行的话, 应该是线程2去读取获取主内存中的值1, 然后再进行+1, =2. 但是也存在一种情况, 线程2直接拿工作内存中的缓存也就是0来+1, 再写入主内存中, 这时候得到的值就为1了(这就是缓存一致性问题). 为什么呢? 因为线程1操作了, 线程2怎么会知道它已经操作了呢? 我自己工作内存中有缓存, 肯定是用我自己工作内存中的缓存啊
注意:
为了获得较好的执行性能,Java内存模型并没有限制执行引擎使用处理器的寄存器或者高速缓存来提升指令执行速度,也没有限制编译器对指令进行重排序。也就是说,在java内存模型中,也会存在缓存一致性问题和指令重排序的问题。
Java内存模型规定所有的变量都是存在主存当中(类似于前面说的物理内存),每个线程都有自己的工作内存(类似于前面的高速缓存)。线程对变量的所有操作都必须在工作内存中进行,而不能直接对主存进行操作。并且每个线程不能访问其他线程的工作内存。
三.volatile(最轻量级的同步机制)
1、volatile关键字的两层语义
一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:
1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。
2)禁止进行指令重排序。
也就是说volatile 会保证可见性, 有序性, 并不保证原子性
2、volatile的原理和实现机制
前面讲述了源于volatile关键字的一些使用,下面我们来探讨一下volatile到底如何保证可见性和禁止指令重排序的。
下面这段话摘自《深入理解Java虚拟机》:
“观察加入volatile关键字和没有加入volatile关键字时所生成的汇编代码发现,加入volatile关键字时,会多出一个lock前缀指令”
lock前缀指令实际上相当于一个内存屏障(也成内存栅栏),内存屏障会提供3个功能:
1)它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面;即在执行到内存屏障这句指令时,在它前面的操作已经全部完成;
2)它会强制将对缓存的修改操作立即写入主存;
3)如果是写操作,它会导致其他CPU中对应的缓存行无效。
3、volatile 与 synchronized 的比较
(1)volatile本质是在告诉jvm当前变量在寄存器(工作内存)中的值是不确定的,需要从主存中读取;synchronized则是锁定当前变量,只有当前线程可以访问该变量,其他线程被阻塞住;
(2)volatile仅能使用在变量级别;synchronized则可以使用在变量、方法、和类级别的;
(3)volatile仅能实现变量的修改可见性,不能保证原子性;而synchronized则可以保证变量的修改可见性和原子性;
(4)volatile不会造成线程的阻塞,即volatile不能用来同步,因为多个线程并发访问volatile修饰的变量不会阻塞;synchronized可能会造成线程的阻塞;
(5)当一个域的值依赖于它之前的值时,volatile就无法工作了,如n=n+1,n++等。如果某个域的值受到其他域的值的限制,那么volatile也无法工作,如Range类的lower和upper边界,必须遵循lower<=upper的限制。
(6)volatile标记的变量不会被编译器优化;synchronized标记的变量可以被编译器优化。
总结:
与锁相比,volatile 变量是一种非常简单但同时又非常脆弱的同步机制,它在某些情况下将提供优于锁的性能和伸缩性。如果严格遵循 volatile 的使用条件即变量真正独立于其他变量和自己以前的值 ,在某些情况下可以使用 volatile 代替 synchronized 来简化代码。然而,使用 volatile 的代码往往比使用锁的代码更加容易出错。