案例来源
整体架构
- 概述
- 统计模块,召回历史最热、最近最热、平均评分最高、每类别评分Top10
- 离线推荐,基于ALS召回与用户最相近、与电影最相近的TopN电影
- 实时推荐,基于离线推荐计算的电影相似度矩阵,结合用户最近K次评分,计算当前评分电影的某个相似电影与最近K次评分电影的平均相似得分,混合增强减弱因子,获得当前评分电影的相似电影序列的排序结果
- 内容推荐,基于TF-IDF计算电影之间的相似度,获取电影相似度矩阵,召回逻辑未实现
- 问题:没有过滤模块,没有混排模块(视具体场景而定)
代码结构及pom文件配置
- 代码结构
- 推荐工程pom
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.lotuslaw</groupId>
<artifactId>MovieRecommendSystem</artifactId>
<packaging>pom</packaging>
<version>1.0-SNAPSHOT</version>
<modules>
<module>recommender</module>
</modules>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<log4j.version>1.2.17</log4j.version>
<slf4j.version>1.7.22</slf4j.version>
<mongodb-spark.version>2.0.0</mongodb-spark.version>
<casbah.version>3.1.1</casbah.version>
<elasticsearch-spark.version>5.6.2</elasticsearch-spark.version>
<elasticsearch.version>5.6.2</elasticsearch.version>
<redis.version>2.9.0</redis.version>
<kafka.version>0.10.2.1</kafka.version>
<spark.version>2.1.1</spark.version>
<scala.version>2.11.8</scala.version>
<jblas.version>1.2.1</jblas.version>
</properties>
<dependencies>
<!--引入共同的日志管理工具-->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>jcl-over-slf4j</artifactId>
<version>${slf4j.version}</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>${slf4j.version}</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>${slf4j.version}</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>${log4j.version}</version>
</dependency>
</dependencies>
<build>
<!--声明并引入子项目共有的插件-->
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.1</version>
<!--所有的编译用 JDK1.8-->
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
<pluginManagement>
<plugins>
<!--maven 的打包插件-->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<!--该插件用于将 scala 代码编译成 class 文件-->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<!--绑定到 maven 的编译阶段-->
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</pluginManagement>
</build>
</project>
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>MovieRecommendSystem</artifactId>
<groupId>com.lotuslaw</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>recommender</artifactId>
<packaging>pom</packaging>
<modules>
<module>DataLoader</module>
<module>StatisticsRecommender</module>
<module>OfflineRecommender</module>
<module>StreamingRecommender</module>
<module>ContentRecommender</module>
<module>KafkaStream</module>
</modules>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencyManagement>
<dependencies>
<!-- 引入 Spark 相关的 Jar 包 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-graphx_2.11</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<!-- 父项目已声明该 plugin,子项目在引入的时候,不用声明版本和已经声明的配置 -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>recommender</artifactId>
<groupId>com.lotuslaw</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>DataLoader</artifactId>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<!-- Spark 的依赖引入 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
</dependency>
<!-- 引入 Scala -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
</dependency>
<!-- 加入 MongoDB 的驱动 -->
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>casbah-core_2.11</artifactId>
<version>${casbah.version}</version>
</dependency>
<dependency>
<groupId>org.mongodb.spark</groupId>
<artifactId>mongo-spark-connector_2.11</artifactId>
<version>${mongodb-spark.version}</version>
</dependency>
<!-- 加入 ElasticSearch 的驱动 -->
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>transport</artifactId>
<version>${elasticsearch.version}</version>
</dependency>
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch-spark-20_2.11</artifactId>
<version>${elasticsearch-spark.version}</version>
<!-- 将不需要依赖的包从依赖路径中除去 -->
<exclusions>
<exclusion>
<groupId>org.apache.hive</groupId>
<artifactId>hive-service</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
</project>
- StatisticsRecommender pom
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>recommender</artifactId>
<groupId>com.lotuslaw</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>StatisticsRecommender</artifactId>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<!-- Spark 的依赖引入 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
</dependency>
<!-- 引入 Scala -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
</dependency>
<!-- 加入 MongoDB 的驱动 -->
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>casbah-core_2.11</artifactId>
<version>${casbah.version}</version>
</dependency>
<dependency>
<groupId>org.mongodb.spark</groupId>
<artifactId>mongo-spark-connector_2.11</artifactId>
<version>${mongodb-spark.version}</version>
</dependency>
</dependencies>
</project>
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>recommender</artifactId>
<groupId>com.lotuslaw</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>OfflineRecommender</artifactId>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>org.scalanlp</groupId>
<artifactId>jblas</artifactId>
<version>${jblas.version}</version>
</dependency>
<!-- 引入 Spark 相关的 Jar 包 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- 加入 MongoDB 的驱动 -->
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>casbah-core_2.11</artifactId>
<version>${casbah.version}</version>
</dependency>
<dependency>
<groupId>org.mongodb.spark</groupId>
<artifactId>mongo-spark-connector_2.11</artifactId>
<version>${mongodb-spark.version}</version>
</dependency>
</dependencies>
</project>
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>recommender</artifactId>
<groupId>com.lotuslaw</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>StreamingRecommender</artifactId>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<!-- Spark 的依赖引入 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
</dependency>
<!-- 引入 Scala -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
</dependency>
<!-- 加入 MongoDB 的驱动 -->
<!-- 用于代码方式连接 MongoDB -->
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>casbah-core_2.11</artifactId>
<version>${casbah.version}</version>
</dependency>
<!-- 用于 Spark 和 MongoDB 的对接 -->
<dependency>
<groupId>org.mongodb.spark</groupId>
<artifactId>mongo-spark-connector_2.11</artifactId>
<version>${mongodb-spark.version}</version>
</dependency>
<!-- redis -->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>3.2.0</version>
</dependency>
<!-- kafka -->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.7.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>
</project>
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>recommender</artifactId>
<groupId>com.lotuslaw</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>ContentRecommender</artifactId>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>org.scalanlp</groupId>
<artifactId>jblas</artifactId>
<version>${jblas.version}</version>
</dependency>
<!-- 引入 Spark 相关的 Jar 包 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- 加入 MongoDB 的驱动 -->
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>casbah-core_2.11</artifactId>
<version>${casbah.version}</version>
</dependency>
<dependency>
<groupId>org.mongodb.spark</groupId>
<artifactId>mongo-spark-connector_2.11</artifactId>
<version>${mongodb-spark.version}</version>
</dependency>
</dependencies>
</project>
各模块代码
package com.lotuslaw.recommender
import com.mongodb.casbah.commons.MongoDBObject
import com.mongodb.casbah.{MongoClient, MongoClientURI}
import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.elasticsearch.action.admin.indices.create.CreateIndexRequest
import org.elasticsearch.action.admin.indices.delete.DeleteIndexRequest
import org.elasticsearch.action.admin.indices.exists.indices.IndicesExistsRequest
import org.elasticsearch.common.settings.Settings
import org.elasticsearch.common.transport.InetSocketTransportAddress
import org.elasticsearch.transport.client.PreBuiltTransportClient
import java.net.InetAddress
/**
* @author: lotuslaw
* @version: V1.0
* @package: com.lotuslaw.recommender
* @create: 2021-08-23 22:49
* @description:
*/
/**
* Movie 数据集
* 260 电影ID:mid
* Star Wars: Episode IV - A New Hope (1977) 电影名称:name
* Princess Leia is captured and held hostage by the evil 详情描述:descri
* 121 minutes 时长:timelong
* September 21, 2004 发行时间:issue
* 1977 拍摄时间:shoot
* English 语言:language
* Action|Adventure|Sci-Fi 类型:genres
* Mark Hamill|Harrison Ford|Carrie Fisher|Peter Cushing|Alec 演员表:actors
* George Lucas 导演:directors
*/
case class Movie(mid: Int, name: String, descri: String, timelong: String, issue: String, shoot: String, language: String,
genres: String, actors: String, directors: String)
/**
* Ratings 数据集
* 1,31,2.5,1260759144
*/
case class Rating(uid: Int, mid: Int, score: Double, timestamp: Int)
/**
* Tags 数据集
* 15,1955,dentist,1193435061
*/
case class Tag(uid: Int, mid: Int, tag: String, timestamp: Int)
// 把mongo和ES的配置封装成样例类
/**
*
* @param uri MongoDB连接
* @param db MongoDB数据库
*/
case class MongoConfig(uri: String, db: String)
/**
*
* @param httpHosts http主机列表
* @param transportHosts transport主机列表
* @param index 需要操作的索引
* @param clustername 集群名称,es-cluster
*/
case class ESConfig(httpHosts: String, transportHosts: String, index: String, clustername: String)
object DataLoader {
// 定义常量
val MOVIE_DATA_PATH = "C:\\Users\\86188\\Desktop\\推荐系统课程\\5.推荐工程\\recommender\\DataLoader\\src\\main\\resources\\movies.csv"
val RATING_DATA_PATH = "C:\\Users\\86188\\Desktop\\推荐系统课程\\5.推荐工程\\recommender\\DataLoader\\src\\main\\resources\\ratings.csv"
val TAG_DATA_PATH = "C:\\Users\\86188\\Desktop\\推荐系统课程\\5.推荐工程\\recommender\\DataLoader\\src\\main\\resources\\tags.csv"
val MONGODB_MOVIE_COLLECTION = "Movie"
val MONGODB_RATING_COLLECTION = "Rating"
val MONGODB_TAG_COLLECTION = "Tag"
val ES_MOVIE_INDEX = "Movie"
def main(args: Array[String]): Unit = {
val config = Map(
"spark.cores" -> "local[*]",
"mongo.uri" -> "mongodb://192.168.88.132:27017/recommender",
"mongo.db" -> "recommender",
"es.httpHosts" -> "linux:9200",
"es.transportHosts" -> "linux:9300",
"es.index" -> "recommender",
"es.cluster.name" -> "es-cluster"
)
// 创建一个sparkConf
val sparkConf: SparkConf = new SparkConf().setMaster(config("spark.cores")).setAppName("DataLoader")
// 创建一个sparkSession
val spark = SparkSession.builder().config(sparkConf).getOrCreate()
import spark.implicits._
// 加载数据
val movieRDD = spark.sparkContext.textFile(MOVIE_DATA_PATH)
val movieDF = movieRDD.map{
item => {
val attr = item.split("\\^")
Movie(attr(0).toInt, attr(1).trim, attr(2).trim, attr(3).trim, attr(4).trim, attr(5).trim, attr(6).trim, attr(7).trim, attr(8).trim, attr(9).trim)
}
}.toDF()
val ratingRDD = spark.sparkContext.textFile(RATING_DATA_PATH)
val ratingDF = ratingRDD.map{
item => {
val attr = item.split(",")
Rating(attr(0).toInt, attr(1).toInt, attr(2).toDouble, attr(3).toInt)
}
}.toDF()
val tagRDD = spark.sparkContext.textFile(TAG_DATA_PATH)
val tagDF = tagRDD.map{
item => {
val attr = item.split(",")
Tag(attr(0).toInt, attr(1).toInt, attr(2).trim, attr(3).toInt)
}
}.toDF()
implicit val mongoConfig: MongoConfig = MongoConfig(config("mongo.uri"), config("mongo.db"))
// 将数据保存到MongoDB
storeDataInMongoDB(movieDF, ratingDF, tagDF)
// 数据预处理,把movie对应的tag信息添加进去,加一列 tag1|tag2|tag3...
import org.apache.spark.sql.functions._
/**
* mid, tags
* tags: tag1|tag2|tag3...
*/
val newTag = tagDF.groupBy($"mid")
.agg(concat_ws("|", collect_set($"tag")).as("tags"))
.select("mid", "tags")
// 对newTag和movie做join,数据合并在一起,左外连接
val movieWithTagsDF = movieDF.join(newTag, Seq("mid"), "left")
implicit val esConfig: ESConfig = ESConfig(config("es.httpHosts"), config("es.transportHosts"), config("es.index"), config("es.cluster.name"))
// 保存数据到ES
storeDataInES(movieWithTagsDF)
// spark.stop()
}
def storeDataInMongoDB(movieDF: DataFrame, ratingDF: DataFrame, tagDF: DataFrame)(implicit mongoConfig: MongoConfig): Unit = {
// 新建一个mongodb的连接
val mongoClient = MongoClient(MongoClientURI(mongoConfig.uri))
// 如果mongodb中已经有相应的数据库,先删除
mongoClient(mongoConfig.db)(MONGODB_MOVIE_COLLECTION).dropCollection()
mongoClient(mongoConfig.db)(MONGODB_RATING_COLLECTION).dropCollection()
mongoClient(mongoConfig.db)(MONGODB_TAG_COLLECTION).dropCollection()
// 将数据写入mongodb表中
movieDF.write
.option("uri", mongoConfig.uri)
.option("collection", MONGODB_MOVIE_COLLECTION)
.mode("overwrite")
.format("com.mongodb.spark.sql")
.save()
ratingDF.write
.option("uri", mongoConfig.uri)
.option("collection", MONGODB_RATING_COLLECTION)
.mode("overwrite")
.format("com.mongodb.spark.sql")
.save()
tagDF.write
.option("uri", mongoConfig.uri)
.option("collection", MONGODB_TAG_COLLECTION)
.mode("overwrite")
.format("com.mongodb.spark.sql")
.save()
// 对数据表建索引
// 1 为指定按升序创建索引
mongoClient(mongoConfig.db)(MONGODB_MOVIE_COLLECTION).createIndex(MongoDBObject("mid" -> 1))
mongoClient(mongoConfig.db)(MONGODB_RATING_COLLECTION).createIndex(MongoDBObject("uid" -> 1))
mongoClient(mongoConfig.db)(MONGODB_RATING_COLLECTION).createIndex(MongoDBObject("mid" -> 1))
mongoClient(mongoConfig.db)(MONGODB_TAG_COLLECTION).createIndex(MongoDBObject("uid" -> 1))
mongoClient(mongoConfig.db)(MONGODB_TAG_COLLECTION).createIndex(MongoDBObject("mid" -> 1))
mongoClient.close()
}
def storeDataInES(movieDF: DataFrame)(implicit eSConfig: ESConfig): Unit = {
// 新建es配置
val settings: Settings = Settings.builder().put("cluster.name", eSConfig.clustername).build()
// 新建一个es客户端
val esClient = new PreBuiltTransportClient(settings)
val REGEX_HOST_PORT = "(.+):(\\d+)".r
eSConfig.transportHosts.split(",").foreach{
case REGEX_HOST_PORT(host: String, port: String) =>
esClient.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(host), port.toInt))
}
// 先清理遗留的数据
if(esClient.admin().indices().exists(new IndicesExistsRequest(eSConfig.index))
.actionGet()
.isExists
) {
esClient.admin().indices().delete(new DeleteIndexRequest(eSConfig.index))
}
esClient.admin().indices().create(new CreateIndexRequest(eSConfig.index))
movieDF.write
.option("es.nodes", eSConfig.httpHosts)
.option("es.http.timeout", "100m")
.option("es.mapping.id", "mid")
.option("es.nodes.wan.only","true")
.mode("overwrite")
.format("org.elasticsearch.spark.sql")
.save(eSConfig.index + "/" + ES_MOVIE_INDEX)
}
}
package com.lotuslaw.statistics
import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}
import java.text.SimpleDateFormat
import java.util.Date
/**
* @author: lotuslaw
* @version: V1.0
* @package: com.lotuslaw.statistics
* @create: 2021-08-24 11:24
* @description:
*/
case class Movie(mid: Int, name: String, descri: String, timelong: String, issue: String, shoot: String, language: String,
genres: String, actors: String, directors: String)
case class Rating(uid: Int, mid: Int, score: Double, timestamp: Int)
case class MongoConfig(uri: String, db: String)
// 定义一个基础推荐对象
case class Recommendation(mid: Int, score: Double)
// 定义电影类别top10推荐对象
case class GenresRecommendation(genres: String, recs: Seq[Recommendation])
object StatisticsRecommender {
// 定义表名
val MONGODB_MOVIE_COLLECTION = "Movie"
val MONGODB_RATING_COLLECTION = "Rating"
// 统计表的名称
val RATE_MORE_MOVIES = "RateMoreMovies"
val RATE_MORE_RECENTLY_MOVIES = "RateMoreRecentlyMovies"
val AVERAGE_TOP_MOVIES = "AverageMovies"
val GENRES_TOP_MOVIES = "GenresTopMovies"
def main(args: Array[String]): Unit = {
val config = Map(
"spark.cores" -> "local[*]",
"mongo.uri" -> "mongodb://linux:27017/recommender",
"mongo.db" -> "recommender"
)
// 创建一个sparkConf
val sparkConf: SparkConf = new SparkConf().setMaster(config("spark.cores")).setAppName("DataLoader")
// 创建一个sparkSession
val spark = SparkSession.builder().config(sparkConf).getOrCreate()
import spark.implicits._
implicit val mongoConfig: MongoConfig = MongoConfig(config("mongo.uri"), config("mongo.db"))
// 从mongodb加载数据
val ratingDF = spark.read
.option("uri", mongoConfig.uri)
.option("collection", MONGODB_RATING_COLLECTION)
.format("com.mongodb.spark.sql")
.load()
.as[Rating]
.toDF()
val movieDF = spark.read
.option("uri", mongoConfig.uri)
.option("collection", MONGODB_MOVIE_COLLECTION)
.format("com.mongodb.spark.sql")
.load()
.as[Movie]
.toDF()
// 创建名为ratings的临时表
ratingDF.createOrReplaceTempView("ratings")
// TODO: 不同的统计推荐结果
// 1.历史热门统计:历史评分数据最多,mid,count
val rateMoreMoviesDF = spark.sql("select mid, count(mid) as count from ratings group by mid")
// 把结果写入对应的mongodb表中
storeDFInMongoDB(rateMoreMoviesDF, RATE_MORE_MOVIES)
// 2.近期热门统计:按照"yyyyMM"格式选取最近的评分数据,统计评分个数
// 创建一个日期格式化工具
val simpleDateFormat = new SimpleDateFormat("yyyyMM")
// 注册udf,把时间戳转换成年月格式
spark.udf.register("changDate", (x: Int) => simpleDateFormat.format(new Date(x * 1000L)).toInt)
// 对原始数据做处理,去掉uid
val ratingOfYearMonth = spark.sql("select mid, score, changDate(timestamp) as yearmonth from ratings")
ratingOfYearMonth.createOrReplaceTempView("ratingOfMonth")
// 从ratingOfMonth中查找电影在各个月份的评分,mid,count,yearmonth
val rateMoreRecentlyMoviesDF = spark.sql("select mid, count(mid) as count, yearmonth from ratingOfMonth group by yearmonth, mid order by yearmonth desc, count desc")
// 存入mongodb
storeDFInMongoDB(rateMoreRecentlyMoviesDF, RATE_MORE_RECENTLY_MOVIES)
// 3.优质电影统计,统计电影的平均评分
val averageMoviesDF = spark.sql("select mid, avg(score) as avg from ratings group by mid")
storeDFInMongoDB(averageMoviesDF, AVERAGE_TOP_MOVIES)
// 4.各类别电影Top统计
// 定义所有类别
val genres = List("Action","Adventure","Animation","Comedy","Crime","Documentary","Drama","Famiy","Fantasy","Foreign","History","Horror","Music","Mystery","Romance","Science","Tv","Thriller","War","Western")
// 把平均评分加入movie表里,加一列,inner join
val movieWithScore = movieDF.join(averageMoviesDF, "mid")
// 为做笛卡尔积,把genres转成rdd
val genresRDD = spark.sparkContext.makeRDD(genres)
// 计算类别top10, 首先对类别和电影做笛卡尔积
val genresTopMoviesDF = genresRDD.cartesian(movieWithScore.rdd)
.filter{
// 条件过滤找出movie的字段genres值包含当前类别genre的那些
case (genre, movieRow) => movieRow.getAs[String]("genres").toLowerCase.contains(genre.toLowerCase())
}
.map{
case (genre, movieRow) => (genre, (movieRow.getAs[Int]("mid"), movieRow.getAs[Double]("avg")))
}
.groupByKey()
.map{
case (genre, items) => GenresRecommendation(genre, items.toList.sortWith(_._2>_._2).take(10).map{
items => Recommendation(items._1, items._2)
})
}
.toDF()
storeDFInMongoDB(genresTopMoviesDF, GENRES_TOP_MOVIES)
spark.stop()
}
def storeDFInMongoDB(df: DataFrame, collection_name: String)(implicit mongoConfig: MongoConfig): Unit = {
df.write
.option("uri", mongoConfig.uri)
.option("collection", collection_name)
.mode("overwrite")
.format("com.mongodb.spark.sql")
.save()
}
}
package com.lotuslaw.offline
import org.apache.spark.SparkConf
import org.apache.spark.mllib.recommendation.{ALS, Rating}
import org.apache.spark.sql.SparkSession
import org.jblas.DoubleMatrix
/**
* @author: lotuslaw
* @version: V1.0
* @package: com.lotuslaw.offline
* @create: 2021-08-24 14:49
* @description:
*/
// 基于评分数据的隐语义模型只需要rating数据
case class MovieRating(uid: Int, mid: Int, score: Double, timestamp: Int)
case class MongoConfig(uri: String, db: String)
case class Recommendation(mid: Int, score: Double)
// 定义基于预测评分的用户推荐列表
case class UserRecs(uid: Int, recs: Seq[Recommendation])
// 定义基于LFM电影特征向量的电影相似度列表
case class MovieRecs(mid: Int, recs: Seq[Recommendation])
object OfflineRecommender {
// 定义表名和常量
val MONGODB_RATING_COLLECTION = "Rating"
val USER_RECS = "UserRecs"
val MOVIE_RECS = "MovieRecs"
val USER_MAX_RECOMMENTDATION = 20
def main(args: Array[String]): Unit = {
val config = Map(
"spark.cores" -> "local[*]",
"mongo.uri" -> "mongodb://linux:27017/recommender",
"mongo.db" -> "recommender"
)
val sparkConf: SparkConf = new SparkConf().setMaster(config("spark.cores")).setAppName("OfflineRecommender")
val spark = SparkSession.builder().config(sparkConf).getOrCreate()
import spark.implicits._
implicit val mongoConfig: MongoConfig = MongoConfig(config("mongo.uri"), config("mongo.db"))
// 加载数据
val ratingRDD = spark.read
.option("uri", mongoConfig.uri)
.option("collection", MONGODB_RATING_COLLECTION)
.format("com.mongodb.spark.sql")
.load()
.as[MovieRating]
.rdd
.map{rating => (rating.uid, rating.mid, rating.score)} // 转化成rdd并去掉时间戳
.cache()
// 从rating数据中提取所有的uid,mid,并去重
val userRDD = ratingRDD.map(_._1).distinct()
val movieRDD = ratingRDD.map(_._2).distinct()
// 训练隐语义模型
val trainData = ratingRDD.map(x => Rating(x._1, x._2, x._3))
val (rank, iterations, lambda) = (100, 5, 0.1)
val model = ALS.train(trainData, rank, iterations, lambda)
// 基于用户和电影的隐特征,计算预测评分,得到用户的推荐列表
// 计算user和movie的笛卡尔积,得到一个评分矩阵
val userMovies = userRDD.cartesian(movieRDD)
// 调用model的predict方法预测评分
val preRatings = model.predict(userMovies)
val userRecs = preRatings
.filter(_.rating > 0) // 过滤出评分大于0的项
.map(rating => (rating.user, (rating.product, rating.rating)))
.groupByKey()
.map{
case (uid, recs) => UserRecs(uid, recs.toList.sortWith(_._2>_._2).take(USER_MAX_RECOMMENTDATION).map(x=>Recommendation(x._1, x._2)))
}
.toDF()
userRecs.write
.option("uri", mongoConfig.uri)
.option("collection", USER_RECS)
.format("com.mongodb.spark.sql")
.save()
// 基于电影隐特征计算相似度矩阵,得到电影的相似度列表
val movieFeatures = model.productFeatures.map{
case (mid, features) => (mid, new DoubleMatrix(features))
}
// 对所有电影两两计算他们的相似度,先做笛卡尔积
val movieRecs = movieFeatures.cartesian(movieFeatures)
.filter{
// 把自己跟自己的配对过滤掉
case (a, b) => a._1 != b._1
}
.map{
case (a, b) =>
val simScore = this.consinSim(a._2, b._2)
(a._1, (b._1, simScore))
}
.filter(_._2._2>0.6) // 过滤出相似度大于0.6的
.groupByKey()
.map{
case (mid, items) => MovieRecs(mid, items.toList.sortWith(_._2>_._2).map(x=>Recommendation(x._1, x._2)))
}
.toDF()
movieRecs.write
.option("uri", mongoConfig.uri)
.option("collection", MOVIE_RECS)
.mode("overwrite")
.format("com.mongodb.spark.sql")
.save()
spark.stop()
}
// 求向量余弦相似度
def consinSim(movie1: DoubleMatrix, movie2: DoubleMatrix): Double = {
movie1.dot(movie2) / (movie1.norm2() * movie2.norm2())
}
}
- StreamingRecommender
package com.lotuslaw.streaming
import com.mongodb.casbah.commons.MongoDBObject
import com.mongodb.casbah.{MongoClient, MongoClientURI}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import redis.clients.jedis.Jedis
/**
* @author: lotuslaw
* @version: V1.0
* @package: com.lotuslaw.streaming
* @create: 2021-08-24 16:29
* @description:
*/
// 定义连接助手对象,序列化
object ConnHelper extends Serializable {
lazy val jedis = new Jedis("linux")
lazy val mongoClient: MongoClient = MongoClient(MongoClientURI("mongodb://linux:27017/recommender"))
}
case class MongoConfig(uri: String, db: String)
// 标准推荐
case class Recommendation(mid: Int, score: Double)
// 用户的推荐
case class UserRecs(uid: Int, recs: Seq[Recommendation])
//电影的相似度
case class MovieRecs(mid: Int, recs: Seq[Recommendation])
object StreamingRecommender {
// 定义表名与常量
val MAX_USER_RATINGS_NUM = 20
val MAX_SIM_MOVIES_NUM = 20
val MONGODB_STREAM_RECS_COLLECTION = "StreamRecs"
val MONGODB_RATING_COLLECTION = "Rating"
val MONGODB_MOVIE_RECS_COLLECTION = "MovieRecs"
def main(args: Array[String]): Unit = {
val config = Map(
"spark.cores" -> "local[*]",
"mongo.uri" -> "mongodb://linux:27017/recommender",
"mongo.db" -> "recommender",
"kafka.topic" -> "recommender"
)
val sparkConf: SparkConf = new SparkConf().setMaster(config("spark.cores")).setAppName("StreamingRecommender")
val spark = SparkSession.builder().config(sparkConf).getOrCreate()
// 拿到streaming context
val sc = spark.sparkContext
val ssc = new StreamingContext(sc, Seconds(2)) // batch duration
import spark.implicits._
implicit val mongoConfig: MongoConfig = MongoConfig(config("mongo.uri"), config("mongo.db"))
// 加载电影相似度矩阵数据,把它广播出去
val simMovieMatrix = spark.read
.option("uri", mongoConfig.uri)
.option("collection", MONGODB_MOVIE_RECS_COLLECTION)
.format("com.mongodb.spark.sql")
.load()
.as[MovieRecs]
.rdd
.map { movieRecs => // 为了查询相似度方便,转换成map
(movieRecs.mid, movieRecs.recs.map(x=>(x.mid, x.score)).toMap)
}.collectAsMap()
val simMovieMatrixBroadCast = sc.broadcast(simMovieMatrix)
// 定义kafka连接参数
val kafkaParam = Map(
"bootstrap.servers" -> "linux:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "recommender",
"auto.offset.reset" -> "latest"
)
// 通过kafka创建一个DSteam
val kafkaStream = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Array(config("kafka.topic")), kafkaParam)
)
// 把原始数据UID|MID|SCORE|TIMESTAMP转换成评分流
val ratingStream = kafkaStream.map {
msg =>
val attr = msg.value().split("\\|")
(attr(0).toInt, attr(1).toInt, attr(2).toDouble, attr(3).toInt)
}
// 继续做流式处理,核心算法部分
ratingStream.foreachRDD{
rdds => rdds.foreach{
case (uid, mid, score, timestamp) =>
println("rating data coming! >>>>>>>>>>>>>>>>>>")
// 从redis里获取当前用户最近的k次评分,保存成Array[(mid, score)]
val userRecntlyRatings = getUserRecentlyRating(MAX_USER_RATINGS_NUM, uid, ConnHelper.jedis)
// 从相似度矩阵中取出当前电影最相似的N个电影,作为备选列表,Array[mid]
val candidateMovies = getTopSimMovies(MAX_SIM_MOVIES_NUM, mid, uid, simMovieMatrixBroadCast.value)
// 对每个备选电影,计算推荐优先级,得到当前用户的实时推荐列表,Array[(mid, score)]
val streamRecs = computeMovieScore(candidateMovies, userRecntlyRatings, simMovieMatrixBroadCast.value)
// 把推荐数据保存到mongodb
saveDataToMongoDB(uid, streamRecs)
}
}
// 开始接收和处理数据
ssc.start()
println(">>>>>>>>>>>>>>> straming started")
ssc.awaitTermination()
}
// Redis操作返回的是java类,为了用map操作需要引入转换类
import scala.collection.JavaConversions._
def getUserRecentlyRating(num: Int, uid: Int, jedis: Jedis): Array[(Int, Double)] = {
// 从Redis读取数据,用户评分数据保存在uid:UID 为key的队列里,value是MID:SCORE
jedis.lrange("uid:" + uid, 0, num-1)
.map{
item =>
val attr = item.split("\\:")
(attr(0).trim.toInt, attr(1).trim.toDouble)
}
.toArray
}
/**
* 获取当前电影最相似的num个电影,作为备选电影
* @param num 相似电影数量
* @param mid 当前电影ID
* @param uid 当前评分用户ID
* @param simMovies 相似度矩阵
* @return 过滤之后的备选电影列表
*/
def getTopSimMovies(num: Int, mid: Int, uid: Int, simMovies: scala.collection.Map[Int, scala.collection.immutable.Map[Int, Double]])(implicit mongoConfig: MongoConfig): Array[Int] = {
// 从相似度矩阵中拿到所有相似的电影
val allSimMovies = simMovies(mid).toArray
// 从mongodb中查询用户已看过的电影
val ratingExist = ConnHelper.mongoClient(mongoConfig.db)(MONGODB_RATING_COLLECTION)
.find(MongoDBObject("uid" -> uid))
.toArray
.map{
item => item.get("mid").toString.toInt
}
// 把看过的过滤,得到输出列表
allSimMovies.filter(x => ! ratingExist.contains(x._1))
.sortWith(_._2>_._2)
.take(num)
.map(x => x._1)
}
def computeMovieScore(candidateMovies: Array[Int], userRecentlyRatings: Array[(Int, Double)], simMovies: scala.collection.Map[Int, scala.collection.immutable.Map[Int, Double]]): Array[(Int, Double)] = {
// 定义一个ArrayBuffer,用于保存每一个备选电影的基础得分
val scores = scala.collection.mutable.ArrayBuffer[(Int, Double)]()
// 定义一个HashMap,保存每一个备选定影的增强减弱因子
val increMap = scala.collection.mutable.HashMap[Int, Int]()
val decreMap = scala.collection.mutable.HashMap[Int, Int]()
for (candidateMovie <- candidateMovies; userRecentlyRating <- userRecentlyRatings) {
// 拿到备选电影和最近评分电影的相似度
val simScore = getMoviesSimScore(candidateMovie, userRecentlyRating._1, simMovies)
if (simScore > 0.7) {
// 计算备选电影的基础推荐得分
scores += ((candidateMovie, simScore * userRecentlyRating._2))
if (userRecentlyRating._2 > 3) {
increMap(candidateMovie) = increMap.getOrDefault(candidateMovie, 0) + 1
} else {
decreMap(candidateMovie) = decreMap.getOrDefault(candidateMovie, 0) + 1
}
}
}
// 根据备选电影的mid做groupby,根据公式去求最后的推荐评分
scores.groupBy(_._1).map{
// groupBy之后得到的数据 Map(mid -> ArrayBuffer[(mid, score)])
case (mid, scoreList) =>
(mid, scoreList.map(_._2).sum / scoreList.length + log(increMap.getOrDefault(mid, 1)) - log(decreMap.getOrDefault(mid, 1)))
}.toArray
}
// 获取两个电影之间的相似度
def getMoviesSimScore(mid1: Int, mid2: Int, simMovies: scala.collection.Map[Int, scala.collection.immutable.Map[Int, Double]]): Double = {
simMovies.get(mid1) match {
case Some(sims) => sims.get(mid2) match {
case Some(score) => score
case None => 0.0
}
case None => 0.0
}
}
// 求一个数的对数
def log(m: Int): Double = {
val N = 10
math.log(m) / math.log(N)
}
def saveDataToMongoDB(uid: Int, streamRecs: Array[(Int, Double)])(implicit mongoConfig: MongoConfig): Unit = {
// 定义到StreamRecs表的连接
val streamRecsCollection = ConnHelper.mongoClient(mongoConfig.db)(MONGODB_STREAM_RECS_COLLECTION)
// 如果表中已有uid对应的数据,先删除
streamRecsCollection.findAndRemove(MongoDBObject("uid" -> uid))
// 将streamRecs存入表中
streamRecsCollection.insert(MongoDBObject("uid" -> uid, "recs" -> streamRecs.map(x=>MongoDBObject("mid"->x._1, "score"->x._2))))
}
}
package com.lotuslaw.content
import org.apache.spark.SparkConf
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
import org.apache.spark.ml.linalg.SparseVector
import org.apache.spark.sql.SparkSession
import org.jblas.DoubleMatrix
/**
* @author: lotuslaw
* @version: V1.0
* @package: com.lotuslaw.content
* @create: 2021-08-24 19:37
* @description:
*/
// 需要的数据源是电影内容信息
case class Movie(mid: Int, name: String, descri: String, timelong: String, issue: String, shoot: String, language: String,
genres: String, actors: String, directors: String)
case class MongoConfig(uri: String, db: String)
case class Recommendation(mid: Int, score: Double)
// 定义基于电影内容信息提取出的特征向量的电影相似度列表
case class MovieRecs(mid: Int, recs: Seq[Recommendation])
object ContentRecommender {
// 定义常量及表名
val MONGODB_MOVIE_COLLECTION = "Movie"
val CONTENT_MOVIE_RECS = "ContentMovieRecs"
def main(args: Array[String]): Unit = {
val config = Map(
"spark.cores" -> "local[*]",
"mongo.uri" -> "mongodb://linux:27017/recommender",
"mongo.db" -> "recommender"
)
val sparkConf: SparkConf = new SparkConf().setMaster(config("spark.cores")).setAppName("OfflineRecommender")
val spark = SparkSession.builder().config(sparkConf).getOrCreate()
import spark.implicits._
implicit val mongoConfig: MongoConfig = MongoConfig(config("mongo.uri"), config("mongo.db"))
// 加载数据并做预处理
val movieTagsDF = spark.read
.option("uri", mongoConfig.uri)
.option("collection", MONGODB_MOVIE_COLLECTION)
.format("com.mongodb.spark.sql")
.load()
.as[Movie]
.map(
x => (x.mid, x.name, x.genres.map(c=>if(c==‘|‘) ‘ ‘ else c))
)
.toDF("mid", "name", "genres")
.cache()
// TODO: 从内容信息中提取电影特征向量
// 核心部分,用TF-IDF从内容信息中提取电影特征向量
// 创建一个分词器,默认按照空格分词
val tokenizer = new Tokenizer().setInputCol("genres").setOutputCol("words")
// 用分词器对原始数据做转换,生成新的一列words
val wordsData = tokenizer.transform(movieTagsDF)
// 引入HashingTF工具,可以把一个词语序列转化成对应的词频
val hasingTF = new HashingTF().setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(50)
val featurizeData = hasingTF.transform(wordsData)
// 引入IDF工具,可以得到idf模型
val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
// 训练idf模型,得到每个词的逆文档频率
val idfModel = idf.fit(featurizeData)
// 用模型对元数据进行处理,得到文档中每个词的tf-idf,作为新的特征向量
val rescaledData = idfModel.transform(featurizeData)
val movieFeatures = rescaledData.map(
row => (row.getAs[Int]("mid"), row.getAs[SparseVector]("features").toArray)
)
.rdd
.map(
x => (x._1, new DoubleMatrix(x._2))
)
// 对所有电影两两计算他们的相似度,先做笛卡尔积
val movieRecs = movieFeatures.cartesian(movieFeatures)
.filter{
// 把自己跟自己的配对过滤掉
case (a, b) => a._1 != b._1
}
.map{
case (a, b) =>
val simScore = this.consinSim(a._2, b._2)
(a._1, (b._1, simScore))
}
.filter(_._2._2>0.6) // 过滤出相似度大于0.6的
.groupByKey()
.map{
case (mid, items) => MovieRecs(mid, items.toList.sortWith(_._2>_._2).map(x=>Recommendation(x._1, x._2)))
}
.toDF()
movieRecs.write
.option("uri", mongoConfig.uri)
.option("collection", CONTENT_MOVIE_RECS)
.mode("overwrite")
.format("com.mongodb.spark.sql")
.save()
spark.stop()
}
// 求向量余弦相似度
def consinSim(movie1: DoubleMatrix, movie2: DoubleMatrix): Double = {
movie1.dot(movie2) / (movie1.norm2() * movie2.norm2())
}
}
2-电影推荐案例学习