List是一种最普通的泛函数据结构,比较直观,有良好的示范基础。List就像一个管子,里面可以装载一长条任何类型的东西。如需要对管子里的东西进行处理,则必须在管子内按直线顺序一个一个的来,这符合泛函编程的风格。与其它的泛函数据结构设计思路一样,设计List时先考虑List的两种状态:空或不为空两种类型。这两种类型可以用case class 来表现:
1 trait List[+A] {}
2 case class Cons[+A](head: A, tail: List[A]) extends List[A]
3 case object Nil extends List[Nothing]
以上是一个可以装载A类型元素的List,是一个多态的类型(Polymorphic Type)。+A表示List是协变(Covariant)的,意思是如果apple是fruit的子类(subtype)那么List[apple]就是List[fruit]的子类。Nil继承了List[Nothing],Nothing是所有类型的子类。结合协变性质,Nil可以被视为List[Int],List[String]...
List的另一种实现方式:
1 trait List[+A] {
2 def node: Option[(A, List[A])]
3 def isEmpty = node.isEmpty
4 }
5 object List {
6 def empty[A] = new List[A] { def node = None}
7 def cons[A](head: A, tail: List[A]) = new List[A] { def node = Some((head, tail))}
8 }
以上代码中empty,cons两个方法可以实现List的两个状态。
我们还是采用第一种实现方式来进行下面有关List数据运算的示范。第二种方式留待Stream的具体实现示范说明。
先来个List*构建器:可以用List(1,2,3)这种形式构建List:
1 object List {
2 def apply[A](as: A*): List[A] = {
3 if (as.isEmpty) Nil
4 else Cons(as.head,apply(as.tail:_*))
5 }
6 }
说明:使用了递归算法来处理可变数量的输入参数。apply的传入参数as是个数组Array[A],我们使用了Scala标准集合库Array的方法:as.head, as.tail。示范如下:
1 scala> Array(1,2,3).head
2 res11: Int = 1
3
4 scala> Array(1,2,3).tail
5 res12: Array[Int] = Array(2, 3)
增加了apply方法后示范一下List的构成:
1 val li = List(1,2,3) //> li : ch3.list.List[Int] = Cons(1,Cons(2,Cons(3,Nil)))
2 val ls = List("one","two","three") //> ls : ch3.list.List[String] = Cons(one,Cons(two,Cons(three,Nil)))
与以下方式对比,写法简洁多了:
1 val lInt = Cons(1,Cons(2,Cons(3,Nil))) //> lInt : ch3.list.Cons[Int] = Cons(1,Cons(2,Cons(3,Nil)))
再来试一个运算:计算List[Int]里所有元素的和,还是用模式匹配和递归方式来写:
1 trait List[+A] {
2 def sum: Int = this match {
3 case Nil => 0
4 case Cons(h: Int,t: List[Int]) => h + t.sum
5 }
6 }
我们把sum的实现放到特质申明里就可以用以下简洁的表达方式了:
1 List(1,2,3) sum //> res0: Int = 6
再试着玩多态函数sum:
1 def sum[B >: A](z: B)(f: (B,B) => B): B = this match {
2 case Nil => z
3 case Cons(h,t) => f(h, t.sum(z)(f))
4 }
现在可以分别试试List[Int]和List[String]:
1 List(1,2,3).sum(0){_ + _} //> res0: Int = 6
2 List("hello",",","World","!").sum(""){_ + _} //> res1: String = hello,World!
以下是一些List常用的函数:
1 trait List[+A] {
2
3 def head: A = this match {
4 case Nil => sys.error("Empty List!")
5 case Cons(h,t) => h
6 }
7 def tail: List[A] = this match {
8 case Nil => sys.error("Empty List!")
9 case Cons(h,t) => t
10 }
11 def take(n: Int): List[A] = n match {
12 case k if(k<0) => sys.error("index < 0 !")
13 case 0 => Nil
14 case _ => this match {
15 case Nil => Nil
16 case Cons(h,t) => Cons(h,t.take(n-1))
17 }
18 }
19 def takeWhile(f: A => Boolean): List[A] = this match {
20 case Nil => Nil
21 case Cons(h,t) => if(f(h)) Cons(h,t.takeWhile(f)) else Nil
22 }
23 def drop(n: Int): List[A] = n match {
24 case k if(k<0) => sys.error("index < 0 !")
25 case 0 => this
26 case _ => this match {
27 case Nil => Nil
28 case Cons(h,t) => t.drop(n-1)
29 }
30 }
31 def dropWhile(f: A => Boolean): List[A] = this match {
32 case Nil => Nil
33 case Cons(h,t) => if (f(h)) t.dropWhile(f) else this
34 }
35 }
看看以上的这些函数;是不是都比较相似?那是因为都是泛函编程风格的原因。主要以模式匹配和递归算法来实现。以下是使用示范:
1 List(1,2,3).head //> res0: Int = 1
2 List(1,2,3).tail //> res1: ch3.list.List[Int] = Cons(2,Cons(3,Nil))
3 List(1,2,3).take(2) //> res2: ch3.list.List[Int] = Cons(1,Cons(2,Nil))
4 List(1,2,3).takeWhile(x => x < 3) //> res3: ch3.list.List[Int] = Cons(1,Cons(2,Nil))
5 List(1,2,3) takeWhile {_ < 3} //> res4: ch3.list.List[Int] = Cons(1,Cons(2,Nil))
6 List(1,2,3).drop(2) //> res5: ch3.list.List[Int] = Cons(3,Nil)
7 List(1,2,3).dropWhile(x => x < 3) //> res6: ch3.list.List[Int] = Cons(3,Nil)
8 List(1,2,3) dropWhile {_ < 3} //> res7: ch3.list.List[Int] = Cons(3,Nil)
试试把一个List拼在另一个List后面:
1 def ++[B >: A](a: List[B]): List[B] = this match {
2 case Nil => a
3 case Cons(h,t) => Cons(h,t.++(a))
4 }
1 ist(1,2) ++ List(3,4) //> res8: ch3.list.List[Int] = Cons(1,Cons(2,Cons(3,Cons(4,Nil))))
只是想试试Scala的简洁表达方式。
噢,漏了两个:
1 def init: List[A] = this match {
2 case Cons(_,Nil) => Nil
3 case Cons(h,t) => Cons(h,t.init)
4 }
5 def length: Int = this match {
6 case Nil => 0
7 case Cons(h,t) => 1 + t.length
8 }
1 List(1,2,3).init //> res9: ch3.list.List[Int] = Cons(1,Cons(2,Nil))
2 List(1,2,3).length //> res10: Int = 3
下面把几个泛函数据结构通用的函数实现一下:
1 def map[B](f: A => B): List[B] = this match {
2 case Nil => Nil
3 case Cons(h,t) => Cons(f(h),( t map f))
4 }
5 def flatMap[B]( f: A => List[B]): List[B] = this match {
6 case Nil => Nil
7 case Cons(h,t) => f(h) ++ ( t flatMap f )
8 }
9 def filter(f: A => Boolean): List[A] = this match {
10 case Nil => Nil
11 case Cons(h,t) => if (f(h)) Cons(h,t.filter(f)) else t.filter(f)
12 }
1 List(1,2,3) map {_ + 10} //> res13: ch3.list.List[Int] = Cons(11,Cons(12,Cons(13,Nil)))
2 List(1,2,3) flatMap {x => List(x+10)} //> res14: ch3.list.List[Int] = Cons(11,Cons(12,Cons(13,Nil)))
3 List(1,2,3) filter {_ != 2} //> res15: ch3.list.List[Int] = Cons(1,Cons(3,Nil))
这几个函数有多种实现方法,使Scala for-comprehension对支持的数据结构得以实现。有关这几个函数在泛函编程里的原理和意义在后面的有关Functor,Applicative,Monad课题里细说。