作者:字节流动
来源:https://blog.csdn.net/Kennethdroid/article/details/107405505
关于音频的可视化,在旧文中,我们曾经实现过将 Android AudioRecorder 采集的实时音频单通道 PCM 数据用 OpenGL 渲染成柱状图。具体的渲染过程和细节,请移步这篇文章,代码已开源:
提取一个通道的音频数据
在上一篇文章,我们构建 OpenSLES 播放器时,对数据格式的定义如下:
SLDataFormat_PCM pcm = { SL_DATAFORMAT_PCM,//format type (SLuint32)2,//channel count 双通道 SL_SAMPLINGRATE_44_1,//44100hz SL_PCMSAMPLEFORMAT_FIXED_16,// bits per sample 2字节=16bit SL_PCMSAMPLEFORMAT_FIXED_16,// container size SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT,// channel mask SL_BYTEORDER_LITTLEENDIAN // endianness 小端序 };
从上面代码中可以看出,音频驱动接收的 PCM 数据的采样率是 44.1kHz,双通道,采样大小 2 字节。由于我们要渲染的是一个通道的 PCM 数据,所以需要对双通道的数据做一个提取。
如上图所示,解码后的 PCM 数据是 2 个通道的数据交叉存储,当使用指针偏移提取某一通道的数据时,每次偏移的步长是 2 字节 X 通道数 = 4 个字节。
提取某一通道的 PCM 数据方式如下,通过该方式我们可以将一帧音频数据每个通道的数据进行分离。
//小端序存储的音频数据 uint8_t* pByte = audioFrame->data; for(int i=0; i<audioFrame->dataSize; i++) { short *pShort = pByte + i * 4; //左声道值 short leftChannelValue = *pShort; pShort = pByte + i * 4 + 2; //右声道值 short rightChannelValue = *pShort; }
另外需要注意的是,数据的存储方式分为大端序和小端序,小端序指低地址存放低位、高地址存放高位,大端序与小端序相反,即低地址存放高位,分离通道数据需要注意。
//大端序存储的音频数据 uint8_t* pByte = audioFrame->data; for(int i=0; i<audioFrame->dataSize; i++) { short *pShort = pByte + i * 4; //左声道值 short leftChannelValue = ((*pShort & 0xFF00) >> 8) | ((*pShort & 0x00FF) << 8); pShort = pByte + i * 4 + 2; //右声道值 short rightChannelValue = ((*pShort & 0xFF00) >> 8) | ((*pShort & 0x00FF) << 8); }
OpenGL ES 渲染音频数据
OpenGLES 全称 OpenGL for Embedded Systems ,是三维图形应用程序接口 OpenGL 的子集,本质上是一个跨编程语言、跨平台的编程接口规范,主要应用于嵌入式设备,如手机、平板等。
由于前期已经系统地阐述了 OpenGL ES 相关知识点,这里就不做展开叙述,详细内容请参考:
Android OpenGL ES 从入门到精通系统性学习教程
利用 OpenGL 渲染音频数据,本质上就是根据音频数据的值去构建一组如下图所示的网格,最终渲染成条状图。
接下来就是代码实现过程,首先在 Java 层创建 GLSurfaceView 的 Render ,FFMediaPlayer 中增加对应 Native 函数:
private GLSurfaceView.Renderer mAudioGLRender = new GLSurfaceView.Renderer() { @Override public void onSurfaceCreated(GL10 gl10, EGLConfig eglConfig) { FFMediaPlayer.native_OnAudioVisualSurfaceCreated(); } @Override public void onSurfaceChanged(GL10 gl10, int w, int h) { FFMediaPlayer.native_OnAudioVisualSurfaceChanged(w, h); } @Override public void onDrawFrame(GL10 gl10) { FFMediaPlayer.native_OnAudioVisualDrawFrame(); } }; public class FFMediaPlayer { static { System.loadLibrary("learn-ffmpeg"); } //...... //for audio visual render public static native void native_OnAudioVisualSurfaceCreated(); public static native void native_OnAudioVisualSurfaceChanged(int width, int height); public static native void native_OnAudioVisualDrawFrame(); }
对应 Java 层接口的 JNI :
//可视化音频的渲染接口 JNIEXPORT void JNICALL Java_com_byteflow_learnffmpeg_media_FFMediaPlayer_native_1OnAudioVisualSurfaceCreated(JNIEnv *env, jclass clazz) { AudioVisualRender::GetInstance()->OnAudioVisualSurfaceCreated(); } JNIEXPORT void JNICALL Java_com_byteflow_learnffmpeg_media_FFMediaPlayer_native_1OnAudioVisualSurfaceChanged(JNIEnv *env, jclass clazz, jint width, jint height) { AudioVisualRender::GetInstance()->OnAudioVisualSurfaceChanged(width, height); } JNIEXPORT void JNICALL Java_com_byteflow_learnffmpeg_media_FFMediaPlayer_native_1OnAudioVisualDrawFrame(JNIEnv *env, jclass clazz) { AudioVisualRender::GetInstance()->OnAudioVisualDrawFrame(); }
Native 层实现音频渲染的类:
#include <LogUtil.h> #include <GLUtils.h> #include "AudioVisualRender.h" #include <gtc/matrix_transform.hpp> #include <detail/type_mat.hpp> #include <detail/type_mat4x4.hpp> #include <render/video/OpenGLRender.h> AudioVisualRender* AudioVisualRender::m_pInstance = nullptr; std::mutex AudioVisualRender::m_Mutex; AudioVisualRender *AudioVisualRender::GetInstance() { if(m_pInstance == nullptr) { std::unique_lock<std::mutex> lock(m_Mutex); if(m_pInstance == nullptr) { m_pInstance = new AudioVisualRender(); } } return m_pInstance; } void AudioVisualRender::ReleaseInstance() { std::unique_lock<std::mutex> lock(m_Mutex); if(m_pInstance != nullptr) { delete m_pInstance; m_pInstance = nullptr; } } void AudioVisualRender::OnAudioVisualSurfaceCreated() { ByteFlowPrintE("AudioVisualRender::OnAudioVisualSurfaceCreated"); if (m_ProgramObj) return; char vShaderStr[] = "#version 300 es\n" "layout(location = 0) in vec4 a_position;\n" "layout(location = 1) in vec2 a_texCoord;\n" "uniform mat4 u_MVPMatrix;\n" "out vec2 v_texCoord;\n" "void main()\n" "{\n" " gl_Position = u_MVPMatrix * a_position;\n" " v_texCoord = a_texCoord;\n" " gl_PointSize = 4.0f;\n" "}"; char fShaderStr[] = "#version 300 es \n" "precision mediump float; \n" "in vec2 v_texCoord; \n" "layout(location = 0) out vec4 outColor; \n" "uniform float drawType; \n" "void main() \n" "{ \n" " if(drawType == 1.0) \n" " { \n" " outColor = vec4(1.5 - v_texCoord.y, 0.3, 0.3, 1.0); \n" " } \n" " else if(drawType == 2.0) \n" " { \n" " outColor = vec4(1.0, 1.0, 1.0, 1.0); \n" " } \n" " else if(drawType == 3.0) \n" " { \n" " outColor = vec4(0.3, 0.3, 0.3, 1.0); \n" " } \n" "} \n"; //生成着色器程序 m_ProgramObj = GLUtils::CreateProgram(vShaderStr, fShaderStr); if (m_ProgramObj == GL_NONE) { LOGCATE("VisualizeAudioSample::Init create program fail"); } //设置 MVP Matrix 变换矩阵 // Projection matrix glm::mat4 Projection = glm::ortho(-1.0f, 1.0f, -1.0f, 1.0f, 0.1f, 100.0f); //glm::mat4 Projection = glm::frustum(-ratio, ratio, -1.0f, 1.0f, 4.0f, 100.0f); //glm::mat4 Projection = glm::perspective(45.0f, ratio, 0.1f, 100.f); // View matrix glm::mat4 View = glm::lookAt( glm::vec3(0, 0, 4), // Camera is at (0,0,1), in World Space glm::vec3(0, 0, 0), // and looks at the origin glm::vec3(0, 1, 0) // Head is up (set to 0,-1,0 to look upside-down) ); // Model matrix glm::mat4 Model = glm::mat4(1.0f); Model = glm::scale(Model, glm::vec3(1.0f, 1.0f, 1.0f)); Model = glm::rotate(Model, 0.0f, glm::vec3(1.0f, 0.0f, 0.0f)); Model = glm::rotate(Model, 0.0f, glm::vec3(0.0f, 1.0f, 0.0f)); Model = glm::translate(Model, glm::vec3(0.0f, 0.0f, 0.0f)); m_MVPMatrix = Projection * View * Model; } void AudioVisualRender::OnAudioVisualSurfaceChanged(int w, int h) { ByteFlowPrintE("AudioVisualRender::OnAudioVisualSurfaceChanged [w, h] = [%d, %d]", w, h); glClearColor(1.0f, 1.0f, 1.0f, 1.0); glViewport(0, 0, w, h); } void AudioVisualRender::OnAudioVisualDrawFrame() { ByteFlowPrintD("AudioVisualRender::OnAudioVisualDrawFrame"); glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); std::unique_lock<std::mutex> lock(m_Mutex); if (m_ProgramObj == GL_NONE || m_pAudioBuffer == nullptr) return; UpdateMesh(); lock.unlock(); // Generate VBO Ids and load the VBOs with data if(m_VboIds[0] == 0) { glGenBuffers(2, m_VboIds); glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat) * m_RenderDataSize * 6 * 3, m_pVerticesCoords, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[1]); glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat) * m_RenderDataSize * 6 * 2, m_pTextureCoords, GL_DYNAMIC_DRAW); } else { glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[0]); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(GLfloat) * m_RenderDataSize * 6 * 3, m_pVerticesCoords); glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[1]); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(GLfloat) * m_RenderDataSize * 6 * 2, m_pTextureCoords); } if(m_VaoId == GL_NONE) { glGenVertexArrays(1, &m_VaoId); glBindVertexArray(m_VaoId); glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[0]); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), (const void *) 0); glBindBuffer(GL_ARRAY_BUFFER, GL_NONE); glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[1]); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(GLfloat), (const void *) 0); glBindBuffer(GL_ARRAY_BUFFER, GL_NONE); glBindVertexArray(GL_NONE); } // Use the program object glUseProgram(m_ProgramObj); glBindVertexArray(m_VaoId); GLUtils::setMat4(m_ProgramObj, "u_MVPMatrix", m_MVPMatrix); GLUtils::setFloat(m_ProgramObj, "drawType", 1.0f); glDrawArrays(GL_TRIANGLES, 0, m_RenderDataSize * 6); GLUtils::setFloat(m_ProgramObj, "drawType", 2.0f); glDrawArrays(GL_LINES, 0, m_RenderDataSize * 6); } void AudioVisualRender::UpdateAudioFrame(AudioFrame *audioFrame) { if(audioFrame != nullptr) { ByteFlowPrintD("AudioVisualRender::UpdateAudioFrame audioFrame->dataSize=%d", audioFrame->dataSize); std::unique_lock<std::mutex> lock(m_Mutex); if(m_pAudioBuffer != nullptr && m_pAudioBuffer->dataSize != audioFrame->dataSize) { delete m_pAudioBuffer; m_pAudioBuffer = nullptr; delete [] m_pTextureCoords; m_pTextureCoords = nullptr; delete [] m_pVerticesCoords; m_pVerticesCoords = nullptr; } if(m_pAudioBuffer == nullptr) { m_pAudioBuffer = new AudioFrame(audioFrame->data, audioFrame->dataSize); m_RenderDataSize = m_pAudioBuffer->dataSize / RESAMPLE_LEVEL; m_pVerticesCoords = new vec3[m_RenderDataSize * 6]; //(x,y,z) * 6 points m_pTextureCoords = new vec2[m_RenderDataSize * 6]; //(x,y) * 6 points } else { memcpy(m_pAudioBuffer->data, audioFrame->data, audioFrame->dataSize); } lock.unlock(); } } //创建和更新条状图的网格,这里一帧音频数据太大,进行了采样 void AudioVisualRender::UpdateMesh() { float dy = 0.25f / MAX_AUDIO_LEVEL; float dx = 1.0f / m_RenderDataSize; for (int i = 0; i < m_RenderDataSize; ++i) { int index = i * RESAMPLE_LEVEL; //RESAMPLE_LEVEL 表示采样间隔 short *pValue = (short *)(m_pAudioBuffer->data + index); float y = *pValue * dy; y = y < 0 ? y : -y; vec2 p1(i * dx, 0 + 1.0f); vec2 p2(i * dx, y + 1.0f); vec2 p3((i + 1) * dx, y + 1.0f); vec2 p4((i + 1) * dx, 0 + 1.0f); m_pTextureCoords[i * 6 + 0] = p1; m_pTextureCoords[i * 6 + 1] = p2; m_pTextureCoords[i * 6 + 2] = p4; m_pTextureCoords[i * 6 + 3] = p4; m_pTextureCoords[i * 6 + 4] = p2; m_pTextureCoords[i * 6 + 5] = p3; m_pVerticesCoords[i * 6 + 0] = GLUtils::texCoordToVertexCoord(p1); m_pVerticesCoords[i * 6 + 1] = GLUtils::texCoordToVertexCoord(p2); m_pVerticesCoords[i * 6 + 2] = GLUtils::texCoordToVertexCoord(p4); m_pVerticesCoords[i * 6 + 3] = GLUtils::texCoordToVertexCoord(p4); m_pVerticesCoords[i * 6 + 4] = GLUtils::texCoordToVertexCoord(p2); m_pVerticesCoords[i * 6 + 5] = GLUtils::texCoordToVertexCoord(p3); } } void AudioVisualRender::Init() { m_VaoId = GL_NONE; m_pTextureCoords = nullptr; m_pVerticesCoords = nullptr; memset(m_VboIds, 0, sizeof(GLuint) * 2); m_pAudioBuffer = nullptr; } //释放内存 void AudioVisualRender::UnInit() { if (m_pAudioBuffer != nullptr) { delete m_pAudioBuffer; m_pAudioBuffer = nullptr; } if (m_pTextureCoords != nullptr) { delete [] m_pTextureCoords; m_pTextureCoords = nullptr; } if (m_pVerticesCoords != nullptr) { delete [] m_pVerticesCoords; m_pVerticesCoords = nullptr; } }
最后只需要在 OpenSLES 播放器的回调函数(见上篇文章)中调用下面函数即可:
AudioFrame *audioFrame = m_AudioFrameQueue.front(); if (nullptr != audioFrame && m_AudioPlayerPlay) { SLresult result = (*m_BufferQueue)->Enqueue(m_BufferQueue, audioFrame->data, (SLuint32) audioFrame->dataSize); if (result == SL_RESULT_SUCCESS) { //最后只需要在 OpenSLES 播放器的回调函数中调用 UpdateAudioFrame 函数即可 AudioVisualRender::GetInstance()->UpdateAudioFrame(audioFrame); m_AudioFrameQueue.pop(); delete audioFrame; } }
联系与交流
技术交流可以添加我的微信:Byte-Flow
「视频云技术」你最值得关注的音视频技术公众号,每周推送来自阿里云一线的实践技术文章,在这里与音视频领域一流工程师交流切磋。