学习笔记(29)- 数据集-端到端的对话系统

只有明确了研究对象、了解目标,才能设计研究思路和方法。
所以我调研了端到端的会话系统的数据集。

豆瓣
百度贴吧
微博
JD Dialog Challenge
ubuntu dialog
DSTC (google)重要
metalWOZ (Microsoft) 重要
MultiWOZ (polyAI)
Wizard of OZ
Amazon
CrossWOZ 新出

A User Simulator for Task-Completion Dialogues

学习笔记(29)- 数据集-端到端的对话系统

End-to-End Optimization of Task-Oriented Dialogue Model with Deep Reinforcement Learning

学习笔记(29)- 数据集-端到端的对话系统

Investigation of Language Understanding Impact for Reinforcement Learning Based Dialogue Systems

学习笔记(29)- 数据集-端到端的对话系统

Adversarial Learning of Task-Oriented Neural Dialog Models

学习笔记(29)- 数据集-端到端的对话系统

End-to-End Task-Completion Neural Dialogue Systems

The raw conversational data were collected via Amazon Mechanical Turk, with annotations provided by domain experts.

学习笔记(29)- 数据集-端到端的对话系统

Learning End-to-End Goal-Oriented Dialog

学习笔记(29)- 数据集-端到端的对话系统

MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling

https://arxiv.org/pdf/1810.00278.pdf

学习笔记(29)- 数据集-端到端的对话系统

A Survey of Natural Language Generation Techniques with a Focus on Dialogue Systems - Past, Present and Future Directions

总结了开放域对话系统的语料、模型结构、评估指标

学习笔记(29)- 数据集-端到端的对话系统

上一篇:Intermediate English Book 1


下一篇:词根——rect