第三卷.Stata最新且急需的程序系列汇编

第三卷.Stata最新且急需的程序系列汇编

凡是搞计量经济的,都关注这个号了

投稿:econometrics666@126.com

所有计量经济圈方法论丛的code程序, 宏微观数据库和各种软件都放在社群里.欢迎到计量经济圈社群交流访问.
第三卷.Stata最新且急需的程序系列汇编

关于Stata相关技能,各位学者可以参阅如下文章:1.Stata16新增功能有哪些? 满满干货拿走不谢,2.Stata资料全分享,快点收藏学习,3.Stata统计功能、数据作图、学习资源等,4.Stata学习的书籍和材料大放送, 以火力全开的势头,5.史上最全Stata绘图技巧, 女生的最爱,6.把Stata结果输出到word, excel的干货方案,7.编程语言中的函数什么鬼?Stata所有函数在此集结,8.世界范围内使用最多的500个Stata程序,9.6张图掌握Stata软件的方方面面, 还有谁, 还有谁?,10.LR检验、Wald检验、LM检验什么鬼?怎么在Stata实现,11.Stata15版新功能,你竟然没有想到,一睹为快,12."高级计量经济学及Stata应用"和"Stata十八讲"配套数据,13.数据管理的Stata程序功夫秘籍,14.非线性面板模型中内生性解决方案以及Stata命令,15.把动态面板命令讲清楚了,对Stata的ado详尽解释,16.半参数估计思想和Stata操作示例,17.Stata最有用的points都在这里,无可替代的材料,18.PSM倾向匹配Stata操作详细步骤和代码,干货十足,19.随机前沿分析和包络数据分析 SFA,DEA 及Stata操作,20.福利大放送, Stata编程技巧和使用Tips大集成,21.使用Stata进行随机前沿分析的经典操作指南,22.Stata, 不可能后悔的10篇文章, 编程code和注解,23.用Stata学习Econometrics的小tips, 第二发礼炮,24.用Stata学习Econometrics的小tips, 第一发礼炮,25.广义合成控制法gsynth, Stata运行程序release,26.多重中介效应的估计与检验, Stata MP15可下载,27.输出变量的描述性统计的方案,28.2SLS第一阶段输出, 截面或面板数据及统计值都行,29.盈余管理指标的构建及其Stata实现程序, 对应解读和经典文献,30.Python, Stata, R软件史上最全快捷键合辑!,31.用Stata做面板数据分析, 操作代码应有尽有,32.用Stata做面板数据分析, 操作代码应有尽有。还有很多相关文章,各位学者可以自行搜索参阅。
最近,我们引荐了①如何选择正确的自变量(控制变量),让你的计量模型不再肮脏,②忽略交互效应后果很严重,审稿人很生气!,③过去三十年, RCT, DID, RDD, LE, ML, DSGE等方法的“高光时刻”路线图,④空间双重差分法(spatial DID)最新实证papers合辑!⑤机器学习方法出现在AER, JPE, QJE等顶刊上了,⑥中介效应检验流程, 示意图公布, 不再畏惧中介分析,⑦使用R软件学习计量经济学方法三本书籍推荐,⑧第一(二)卷.Stata最新且有趣的程序系列汇编,⑨计量方法和实证数据的关注热点参考信息,⑩对数vs线性vs二次vs指数形式,到底选择哪种进行计量建模?等,在学者间引起了广泛的讨论。今天,我们引荐使用2019年Stata Journal上关于Stata的最新应用进展,对Stata软件及实证研究感兴趣的学者都可以参阅以下文献。br/>**正文**
关于下方文字内容,作者:付晶晶,石河子大学国际经济与贸易,通信邮箱:fjj1210521@163.com
可以研读这个:第一(二)卷.Stata最新且有趣的程序系列汇编
1、临床中Royston–Parmar联合实验功效、样本大小分析与事件结果
摘要:随机对照实验的事件结果通常用来分析既定比例风险(PH)的处理效果。样本大小的计算是基于log-rank检验或几乎相同的Cox检验,因此称为Cox/log-rank检验。然而,非比例风险(非PH)在实验中越来越常见,且其减少了处理效果和log-rank实验的解释力度,从而影响实验的成功。为解决此问题,Royston和Parmar(2016)提出了“联合检验”,即对每个实验相同生存曲线的全球无效性假设进行检验。Cox/log-rank检验与一种新的检验相结合,这种新检验源于两组试验对象在限制平均生存时间(RMST)时的最大标准化差异,测试数据是基于对几个预先选择时间点的RMST组间差异评估。联合检验涉及Cox/log-rank和RMST检验的最小p值,适当地标准化以在全球无效性假设下得到正确的分布。本文将介绍一个新的命令power_ct,它用来模拟联合检验的功效和样本大小的计算。power_ct支持PH或非PH处理效果,本文在PH和非PH情况下将联合检验与Cox/log-rank检验进行比较。最后,本文提供了样本大小的计算指南,以便在事件发生前实验时考虑到可能的非PH。
Power and sample-size analysis for the Royston–Parmar combined test in clinical trials with a time-to-event outcome
Abstract: Randomized controlled trials with a time-to-event outcome are usually designed and analyzed assuming proportional hazards (PH) of the treatment effect. The sample-size calculation is based on a log-rank test or the nearly identical Cox test, henceforth called the Cox/log-rank test. Nonproportional hazards (non-PH) has become more common in trials and is recognized as a potential threat to interpreting the trial treatment effect and the power of the log-rank test—hence to the success of the trial. To address the issue, in 2016, Royston and Parmar (BMC Medical Research Methodology 16: 16) proposed a “combined test” of the global null hypothesis of identical survival curves in each trial arm. The Cox/log-rank test is combined with a new test derived from the maximal standardized difference in restricted mean survival time (RMST) between the trial arms. The test statistic is based on evaluations of the between-arm difference in RMST over several preselected time points. The combined test involves the minimum p-value across the Cox/log-rank and RMST-based tests, appropriately standardized to have the correct distribution under the global null hypothesis. In this article, I introduce a new command, power_ct, that uses simulation to implement power and sample-size calculations for the combined test. power_ct supports designs with PH or non-PH of the treatment effect. I provide examples in which the power of the combined test is compared with that of the Cox/log-rank test under PH and non-PH scenarios. I conclude by offering guidance for sample-size calculations in time-to-event trials to allow for possible non-PH.
2、基于正向和反向Dickey-Fuller回归的单位根检验
摘要:本文介绍了adfmaxur命令,它用来对观察值的数量和回归中因变量的滞后数进行Leybourne(1995,《牛津经济与统计公报》57:559-571)单位根统计。后者既可以由使用者指定,也可以使用默认设置。本文用一个实例来说明adfmaxur命令的使用。
Unit-root Tests Based on Forward and Reverse Dickey–Fuller Regressions
Abstract: In this article, we present the command adfmaxur, which computes the Leybourne (1995, Oxford Bulletin of Economics and Statistics 57: 559–571) unit-root statistic for different numbers of observations and the number of lags of the dependent variable in the test regressions. The latter can be either specified by the user or endogenously determined. We illustrate the use of adfmaxurwith an empirical example.
3、validscale:验证度量尺度的命令
摘要:主观测量量表常常用于测量临床研究、教育科学或心理学等不可观测被访者特征的领域。为确定问卷有效,问卷的得分结果必须经过验证,也就是说,必须证明心理测量的有效性、可靠性和敏感性。在本文中,我们给出了validscale命令,它提供相应的统计分析来验证主观测量量表的有效性。我们还开发了一个对话框,validscale命令不久就可在Stata中进行操作。
validscale: A Command to Validate Measurement Scales
Abstract: Subjective measurement scales are used to measure nonobservable respondent characteristics in several fields such as clinical research, educational sciences, or psychology. To be useful, the scores resulting from the questionnaire must be validated; that is, they must provide the psychometric properties validity, reliability, and sensitivity. In this article, we present the validscale command, which carries out the required statistical analyses to validate a subjective measurement scale. We have also developed a dialog box, and validscale will soon be implemented online with Numerics by Stata.
4、使用Beta分布对有界因变量的混合回归模型进行拟合的命令
摘要:在本文中,我们描述了betamix命令,它适用于在一个区间内对有界因变量的混合回归模型。该模型是在Pereira、Botter和Sandoval(2012,Communications in Statistics—Theory and Methods41:907-919)中引入的截断膨胀贝塔回归模型的推广,Verkuilen和Smithson (2012, Journal of Educational and Behavioral Statistics 37: 82-113)的混合贝塔回归模型用于在分布的顶部或底部截断变量。betamix接受定义在任何范围内的因变量,只要在估计之前将其转换为区间(0,1)即可。
A Command for Fitting Mixture Regression Models for Bounded Dependent Variables Using the Beta Distribution
Abstract: In this article, we describe the betamix command, which fits mixture regression models for dependent variables bounded in an interval. The model is a generalization of the truncated inflated beta regression model introduced in Pereira, Botter, and Sandoval (2012, Communications in Statistics—Theory and Methods 41: 907–919) and the mixture beta regression model in Verkuilen and Smithson (2012, Journal of Educational and Behavioral Statistics 37: 82–113) for variables with truncated supports at either the top or the bottom of the distribution. betamix accepts dependent variables defined in any range that are then transformed to the interval (0, 1) before estimation.
5、在固定效应面板模型中进行序列相关检验
摘要:目前面板模型的序列相关检验使用起来很麻烦,不适合固定效应模型,仅局限于一阶自相关。为了填补这个空白,本文最近新开发了三个测试。
Testing for Serial Correlation in Fixed-effects Panel Models
Abstract: Current serial correlation tests for panel models are cumbersome to use, not suited for fixed-effects models, or limited to first-order autocorrelation. To fill this gap, I implement three recently developed tests.
6、Ldagibbs: Stata中以潜在Dirichlet分配为主题进行建模的命令
本文介绍ldagibbs命令,它在Stata中实现了潜在的Dirichlet分配
。潜在Dirichlet分配是最流行的机器学习主题模型。该模型自动将文本文档聚集到用户选择的主题数量中,潜在Dirichlet分配将每个文档表示为主题的概率分布,将每个主题表示为单词上的概率分布。因此,潜在Dirichlet分配提供了一种分析大量未分类文本数据内容的方法和一种预定义文档分类的替代方法。
Ldagibbs: A Command for Topic Modeling in Stata Using Latent Dirichlet Allocation
In this article, I introduce the ldagibbs command, which implements latent Dirichlet allocation in Stata. Latent Dirichlet allocation is the most popular machine-learning topic model. Topic models automatically cluster text documents into a user-chosen number of topics. Latent Dirichlet allocation represents each document as a probability distribution over topics and represents each topic as a probability distribution over words. Therefore, latent Dirichlet allocation provides a way to analyze the content of large unclassified text data and an alternative to predefined document classifications.
7、探索边际处理效应:使用Stata进行灵活的估计
在水平和收益都显示的设置中,边际处理效果(MTE)允许我们超越局部平均处理效果并估计整个效果分布。本文概述了MTE背后的理论,并介绍了mtefe,它使用几种估计方法来拟合MTE模型。mtefe比现有的margte (Brave and Walstrum, 2014, Stata Journal 14: 191–217)更加先进和灵活,并能根据结果计算各种处理效应参数。我用几个例子来说明mtefe的用法。
Exploring Marginal Treatment Effects: Flexible Estimation Using Stata
In settings that exhibit selection on both levels and gains, marginal treatment effects (MTE) allow us to go beyond local average treatment effects and estimate the whole distribution of effects. In this article, I survey the theory behind MTE and introduce the package mtefe, which uses several estimation methods to fit MTE models. This package provides important improvements and flexibility over existing packages such as margte (Brave and Walstrum, 2014, Stata Journal 14: 191–217) and calculates various treatment-effect parameters based on the results. I illustrate the use of the package with examples.
8、利用Stata对相关随机系数模型进行拟合和解释
在本文中,我们引入了社区贡献指令randcoef,它适用于Suri (2011, Econometrica 79: 159-209)中讨论的相关随机效应和相关随机系数模型。虽然这种方法已经存在了10年,但它的使用受到最优最小距离复杂的估计过程的限制。randcoef可以容纳最多5轮的面板数据,并提供了几种选择,包括用于估计内生解释变量的替代权重矩阵。我们还使用样本数据进行后估计分析,以便于对结果的理解和解释。
Fitting and Interpreting Correlated Random-coefficient Models Using Stata
In this article, we introduce the community-contributed command randcoef, which fits the correlated random-effects and correlated random-coefficient models discussed in Suri (2011, Econometrica 79: 159–209). While this approach has been around for a decade, its use has been limited by the computationally intensive nature of the estimation procedure that relies on the optimal minimum distance estimator. randcoef can accommodate up to five rounds of panel data and offers several options, including alternative weight matrices for estimation and inclusion of additional endogenous regressors. We also present postestimation analysis using sample data to facilitate understanding and interpretation of results.

第三卷.Stata最新且急需的程序系列汇编

拓展性阅读

关于一些计量方法的合辑,各位学者可以参看如下文章:①“实证研究中用到的200篇文章, 社科学者常备toolkit”、②实证文章写作常用到的50篇名家经验帖, 学者必读系列、③过去10年AER上关于中国主题的Articles专辑、④AEA公布2017-19年度最受关注的十大研究话题, 给你的选题方向,⑤2020年中文Top期刊重点选题方向, 写论文就写这些。后面,咱们又引荐了①使用CFPS, CHFS, CHNS数据实证研究的精选文章专辑!,②这40个微观数据库够你博士毕业了, 反正凭着这些库成了教授,③Python, Stata, R软件史上最全快捷键合辑!,④关于(模糊)断点回归设计的100篇精选Articles专辑!,⑤关于双重差分法DID的32篇精选Articles专辑!,⑥关于合成控制法SCM的33篇精选Articles专辑!⑦最近80篇关于中国国际贸易领域papers合辑!,⑧最近70篇关于中国环境生态的经济学papers合辑!⑨使用CEPS, CHARLS, CGSS, CLHLS数据库实证研究的精选文章专辑!⑩最近50篇使用系统GMM开展实证研究的papers合辑!
关于一些常用数据库,各位学者可以参看如下文章:1.这40个微观数据库够你博士毕业了;2.中国工业企业数据库匹配160大步骤的完整程序和相应数据;3.中国省/地级市夜间灯光数据;4.1997-2014中国市场化指数权威版本;5.1998-2016年中国地级市年均PM2.5;6.计量经济圈经济社会等数据库合集(在社群里);7.中国方言,官员, 行政审批和省长数据库开放;8.2005-2015中国分省分行业CO2数据;9.国际贸易研究中的数据演进与当代问题;10.经济学研究常用中国微观数据手册;11.疫情期Wind资讯金融终端操作指南;12.CEIC数据库操作指南;13.清华北大经管社科数据库有哪些? 不要羡慕嫉妒恨!14.金融领域三大中文数据库, CSMAR, CCER, Wind和CNRDS,15.EPS最新版本使用手册,16.疫情期计量课程免费开放!面板数据, 因果推断, 时间序列分析与Stata应用。
下面这些短链接文章属于合集,可以收藏起来阅读,不然以后都找不到了。
2.5年,计量经济圈近1000篇不重类计量文章,

可直接在公众号菜单栏搜索任何计量相关问题,

Econometrics Circle

上一篇:Hive常用数据函数


下一篇:每天一个sql小知识