已知$ BC=6,AC=2AB, $点$ D $满足$ \overrightarrow{AD}=\dfrac{2x}{x+y}\overrightarrow{AB}+\dfrac{y}{2(x+y)}\overrightarrow{AC}, $设$f(x,y)=|\overrightarrow{AD}|,$若$ f(x,y)\ge f(x_0,y_0) $恒成立,则$f(x_0,y_0)$的最大值为____
解答:4
$ \overrightarrow{AD}=\dfrac{x}{x+y}\overrightarrow{AB_1}+\dfrac{y}{x+y}\overrightarrow{AC_1} $,其中$C_1,B$分别为$ AC $和$ AB_1 $的中点.
易知$B_1C_1=BC=6,\dfrac{AB_1}{AC_1}=\dfrac{2AB}{\frac{1}{2}AC}=2$故$D$在$B_1C_1$所在直线上动,$A$在半径为4的圆上动.
$f(x,y)_{min}$为$A$到$ B_1C_1 $的距离, 再让$ A $动起来时易知最大值为半径4