简介:
本次的网址如下:
对于行星云计算,我之前写过关于微软的云计算的文章具体链接:
微软行星云计算Planetary Computer——行星计算机数据资源管理器介绍!和GEE有啥不同?_此星光明的博客-CSDN博客
数据集:
这里的数据集主要包括:
生物多样性
代码:
import pystac
import planetary_computer
import rioxarray
item_url = "https://planetarycomputer.microsoft.com/api/stac/v1/collections/hgb/items/hgb"
# Load the individual item metadata and sign the assets
item = pystac.Item.from_file(item_url)
signed_item = planetary_computer.sign(item)
# Open one of the data assets (other asset keys to use: 'belowground', 'aboveground_uncertainty', 'belowground_uncertainty')
asset_href = signed_item.assets["aboveground"].href
ds = rioxarray.open_rasterio(asset_href)
ds
DEM数据:
这里有ALOS数据(30m),哥白尼(30m/90m), NASA DEM HGT V001以及USGS 3DEP DEM数据集
代码:
import pystac
import planetary_computer
import rioxarray
item_url = "https://planetarycomputer.microsoft.com/api/stac/v1/collections/landsat-8-c2-l2/items/LC08_L2SR_049073_20211119_02_T1"
# Load the individual item metadata and sign the assets
item = pystac.Item.from_file(item_url)
signed_item = planetary_computer.sign(item)
# Open one of the data assets (other asset keys to use: 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7', 'QA_PIXEL', 'QA_RADSAT', 'SR_QA_AEROSOL')
asset_href = signed_item.assets["SR_B1"].href
ds = rioxarray.open_rasterio(asset_href)
ds
火灾数据集
因数据集的限制,仅有美国本土有:
点击左侧出现的图像我们可以看出年份和影像的分辨率,选择后我们可以再右侧的大地图中看到影像的位置
import pystac
import planetary_computer
import rioxarray
item_url = "https://planetarycomputer.microsoft.com/api/stac/v1/collections/mtbs/items/mtbs_severity_conus_2017_30m"
# Load the individual item metadata and sign the assets
item = pystac.Item.from_file(item_url)
signed_item = planetary_computer.sign(item)
# Open one of the data assets
asset_href = signed_item.assets["burn-severity"].href
ds = rioxarray.open_rasterio(asset_href)
ds
其他影像数据:
有Landsat数据,
我们可以看到每一张影像都有时间和云量的百分比,比较最直观了
这里还有代码:
import pystac
import planetary_computer
import rioxarray
item_url = "https://planetarycomputer.microsoft.com/api/stac/v1/collections/landsat-8-c2-l2/items/LC08_L2SR_065068_20211119_02_T1"
# Load the individual item metadata and sign the assets
item = pystac.Item.from_file(item_url)
signed_item = planetary_computer.sign(item)
# Open one of the data assets (other asset keys to use: 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7', 'QA_PIXEL', 'QA_RADSAT', 'SR_QA_AEROSOL')
asset_href = signed_item.assets["SR_B1"].href
ds = rioxarray.open_rasterio(asset_href)
ds
大家可以在本地去试试:
土地利用/土地分类数据
这里有两个ESRI 10米分辨率数据集 和美国地质调查局间歇土地覆盖数据集
代码:
import pystac
import planetary_computer
import rioxarray
item_url = "https://planetarycomputer.microsoft.com/api/stac/v1/collections/io-lulc/items/60V-2020"
# Load the individual item metadata and sign the assets
item = pystac.Item.from_file(item_url)
signed_item = planetary_computer.sign(item)
# Open one of the data assets
asset_href = signed_item.assets["data"].href
ds = rioxarray.open_rasterio(asset_href)
ds
全球地表水数据集
代码:
import pystac
import planetary_computer
import rioxarray
item_url = "https://planetarycomputer.microsoft.com/api/stac/v1/collections/jrc-gsw/items/90E_80Nv1_3_2020"
# Load the individual item metadata and sign the assets
item = pystac.Item.from_file(item_url)
signed_item = planetary_computer.sign(item)
# Open one of the data assets (other asset keys to use: 'extent', 'occurrence', 'recurrence', 'seasonality', 'transitions')
asset_href = signed_item.assets["change"].href
ds = rioxarray.open_rasterio(asset_href)
ds
以上就是该云平台的展示,只不过目前在线的平台依旧没有开通,但是可以通过 python API进行分析。大家感兴趣的可以去试试,如果对于其他平台分析的可以看一下链接:
(2条消息) 微软行星云计算Planetary Computer——PEARL:土地分类自动制图(AI深度学习(辅助训练样本和模型改进)在线实现土地分类和出图)案例分析!_此星光明的博客-CSDN博客
微软行星云计算Planetary Computer——PEARL:土地分类自动制图(AI深度学习(辅助训练样本和模型改进)在线实现土地分类和出图)案例分析!_此星光明的博客-CSDN博客(2条消息) 微软行星云计算Planetary Computer——previsa南美洲亚马逊雨林森林损坏系统AI智能评估_此星光明的博客-CSDN博客 (3条消息) 微软行星云计算Planetary Computer——PEARL:土地覆盖制图(AI深度学习(辅助训练样本和模型改进)在线实现土地分类和出图)简介!_此星光明的博客-CSDN博客