目录
归并排序原理
归并排序API设计
归并排序代码实现
归并排序的时间复杂度分析
归并排序是采用分治法的一个非常典型的应用。先使每个子序列有序,再使子序列段间有序,也就是将已有的子序列合并,得到完全有序的序列;如果将两个有序表合并成一个有序表,称为二路归并。
归并排序原理
1.尽可能的一组数据拆分成两个元素相等的子组,并对每一个子组继续拆分,直到拆分后的每个子组的元素个数是1为止。
⒉将相邻的两个子组进行合并成一个有序的大组。
3.不断的重复步骤2,直到最终只有一个组为止。
归并排序API设计
归并排序代码实现
public class Merge { //辅助数组 private static Comparable[] assist; //对数组a中的元素进行排序 public static void sort(Comparable[] a){ assist=new Comparable[a.length]; int lo=0; int hi=a.length-1; sort(a,lo,hi); } //对数组a中从lo到hi的元素进行排序 private static void sort(Comparable[] a,int lo,int hi){ if(hi<=lo){ return; } int mid=lo+(hi-lo)/2; //对lo到mid之间的元素进行排序 sort(a,lo,mid); //对mid+1到hi之间的元素进行排序 sort(a,mid+1,hi); //对lo到mid这组数据和mid到hi这组数据进行归并 merge(a,lo,mid,hi); } //对数组中,从lo到mid为一组,从mid+1到hi为一组,对这两组数据进行归并 public static void merge(Comparable[] a,int lo,int mid,int hi){ //lo到mid这组数据和mid+1到hi这组数据归并到辅助数组assist对应的索引处 int i=lo;//定义一个指针,指向assist数组中开始填充数据的索引 int p1=lo;//定义一个指针,指向第一组数据的第一个元素 int p2=mid+1;//定义一个指针,指向第二组数据的第一个元素 //比较左边小组和右边小组中的元素大小,哪个小,就把哪个数据填充到assist数组中 while(p1<=mid&&p2<=hi){ if(less(a[p1],a[p2])){ assist[i++]=a[p1++]; }else{ assist[i++]=a[p2++]; } } //把未填充的数据填到assist中 while(p1<=mid){ assist[i++]=a[p1++]; } while(p2<=hi){ assist[i++]=a[p2++]; } for(int index=lo;index<=hi;index++){ a[index]=assist[index]; } } //比较v元素是否小于w元素 private static boolean less(Comparable v,Comparable w){ return v.compareTo(w)<0; } //数组元素i和j交换位置 private static void exchange(Comparable[] a,int i,int j){ Comparable t=a[i]; a[i]=a[j]; a[j]=t; } } //测试代码 class Test{ public static void main(String[] args) { Integer[] a={8,4,6,5,7,1,3,6,2}; Merge.sort(a); System.out.println(Arrays.toString(a)); } }
归并排序的时间复杂度分析
归并排序是分治思想的最典型的例子,上面的算法中,对a[lo..hi]进行排序,先将它分为a[lo..mid]和a[mid+1..hi]两部分,分别通过递归调用将他们单独排序,最后将有序的子数组归并为最终的排序结果。该递归的出口在于如果一个数组不能再被分为两个子数组,那么就会执行merge进行归并,在归并的时候判断元素的大小进行排序。
用树状图来描述归并,如果一个数组有8个元素,那么它将每次除以2找最小的子数组,共拆log8次,值为3,所以树共有3层那么自顶向下第k层有2^k个子数组,每个数组的长度为2^(3-k),归并最多需要2^(3-k)次比较。因此每层的比较次数为2^k * 2^(3-k)=2^3,那么3层总共为3*2^3。
假设元素的个数为n,那么使用归并排序拆分的次数为log2(n).所以共log2(n)层,那么使用log2(n)替换上面3*2^3中的3这个层数,最终得出的归并排序的时间复杂度为︰log2(n)*2^(log2(n))=log2(n)*n,根据大O推导法则,忽略底数,最终归并排序的时间复杂度为O(nlogn);
归并排序的缺点∶
需要申请额外的数组空间,导致空间复杂度提升,是典型的以空间换时间的操作。
第二种写法
public class MergeSort { private static void mergeSort(int[] arr, int low, int high) { if (low < high) { //当子序列中只有一个元素时结束递归 int mid = (low + high) / 2; //划分子序列 mergeSort(arr, low, mid); //对左侧子序列进行递归排序 mergeSort(arr, mid + 1, high); //对右侧子序列进行递归排序 merge(arr, low, mid, high); //合并 } } private static void merge(int[] arr, int low, int mid, int high) { int[] temp = new int[arr.length]; //辅助数组 int k = 0, i = low, j = mid + 1; //i左边序列和j右边序列起始索引,k是存放指针 while (i <= mid && j <= high) { if (arr[i] <= arr[j]) { temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; } } //如果第一个序列未检测完,直接将后面所有元素加到合并的序列中 while (i <= mid) { temp[k++] = arr[i++]; } //同上 while (j <= high) { temp[k++] = arr[j++]; } //复制回原数组 for (int t = 0; t < k; t++) { arr[low + t] = temp[t]; } } public static void main(String[] args) { int[] arr = {1,28,3,21,11,7,6,18}; mergeSort(arr, 0, arr.length - 1); System.out.println(Arrays.toString(arr)); } }