书接前文,用多进程模式实现fibonnachi并发计算

#coding: utf-8

import logging
import os
import random
import sys
import time
import re
# import requests
# import concurrent.futures
from multiprocessing import cpu_count, current_process, Manager, Queue, Process


logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(message)s')

ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
ch.setFormatter(formatter)
logger.addHandler(ch)


def producer_task(q, fibo_dict):
    for i in range(15):
        value = random.randint(1, 20)
        fibo_dict[value] = None

        logger.info("Producer [%s] putting value [%d] into queue.. " % (current_process().name, value))

        q.put(value)

def consumer_task(q, fibo_dict):
    while not q.empty():
        value = q.get(True, 0.05)
        a, b = 0, 1
        for item in range(value):
            a, b = b, a + b
            fibo_dict[value] = a
        logger.info("consumer [%s] getting value [%d] from queue..." % (current_process().name, value))

data_queue = Queue()
number_of_cpus = cpu_count()
fibo_dict = {}

producer = Process(target=producer_task, args=(data_queue, fibo_dict))
producer.start()
producer.join()

consumer_list = []
for i in range(number_of_cpus):
    consumer = Process(target=consumer_task, args=(data_queue, fibo_dict))
    consumer.start()
    consumer_list.append(consumer)

[consumer.join() for consumer in consumer_list]
    

  书接前文,用多进程模式实现fibonnachi并发计算

上一篇:From Serialized to Shell :: Auditing Google Web Toolkit


下一篇:[翻译] YLGIFImage 高效读取GIF图片