机器学习_数学基础

高等数学

1.导数定义:

导数和微分的概念

\(f'({{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}\) (1)

或者:

\(f'({{x}_{0}})=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}\) (2)

2.左右导数导数的几何意义和物理意义

函数\(f(x)\)在\(x_0\)处的左、右导数分别定义为:

左导数:\({{{f}'}_{-}}({{x}_{0}})=\underset{\Delta x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}},(x={{x}_{0}}+\Delta x)\)

右导数:\({{{f}'}_{+}}({{x}_{0}})=\underset{\Delta x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}\)

3.函数的可导性与连续性之间的关系

Th1: 函数\(f(x)\)在\(x_0\)处可微\(\Leftrightarrow f(x)\)在\(x_0\)处可导

Th2: 若函数在点\(x_0\)处可导,则\(y=f(x)\)在点\(x_0\)处连续,反之则不成立。即函数连续不一定可导。

Th3: \({f}'({{x}_{0}})\)存在\(\Leftrightarrow {{{f}'}_{-}}({{x}_{0}})={{{f}'}_{+}}({{x}_{0}})\)

4.平面曲线的切线和法线

切线方程 : \(y-{{y}_{0}}=f'({{x}_{0}})(x-{{x}_{0}})\)
法线方程:\(y-{{y}_{0}}=-\frac{1}{f'({{x}_{0}})}(x-{{x}_{0}}),f'({{x}_{0}})\ne 0\)

5.四则运算法则
设函数\(u=u(x),v=v(x)\)]在点\(x\)可导则

(1) \((u\pm v{)}'={u}'\pm {v}'\) \(d(u\pm v)=du\pm dv\)
(2)\((uv{)}'=u{v}'+v{u}'\) \(d(uv)=udv+vdu\)

(3) \((\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{{{v}^{2}}}(v\ne 0)\) \(d(\frac{u}{v})=\frac{vdu-udv}{{{v}^{2}}}\)

6.基本导数与微分表

(1) \(y=c\)(常数) \({y}'=0\) \(dy=0\)

(2) \(y={{x}^{\alpha }}\)($\alpha $为实数) \({y}'=\alpha {{x}^{\alpha -1}}\) \(dy=\alpha {{x}^{\alpha -1}}dx\)

(3) \(y={{a}^{x}}\) \({y}'={{a}^{x}}\ln a\) \(dy={{a}^{x}}\ln adx\)
特例: \(({{{e}}^{x}}{)}'={{{e}}^{x}}\) \(d({{{e}}^{x}})={{{e}}^{x}}dx\)

(4) \(y={{\log }_{a}}x\) \({y}'=\frac{1}{x\ln a}\)

\(dy=\frac{1}{x\ln a}dx\)
特例:\(y=\ln x\) \((\ln x{)}'=\frac{1}{x}\) \(d(\ln x)=\frac{1}{x}dx\)

(5) \(y=\sin x\)

\({y}'=\cos x\) \(d(\sin x)=\cos xdx\)

(6) \(y=\cos x\)

\({y}'=-\sin x\) \(d(\cos x)=-\sin xdx\)

(7) \(y=\tan x\)

\({y}'=\frac{1}{{{\cos }^{2}}x}={{\sec }^{2}}x\) \(d(\tan x)={{\sec }^{2}}xdx\)

(8) \(y=\cot x\) \({y}'=-\frac{1}{{{\sin }^{2}}x}=-{{\csc }^{2}}x\) \(d(\cot x)=-{{\csc }^{2}}xdx\)

(9) \(y=\sec x\) \({y}'=\sec x\tan x\)

\(d(\sec x)=\sec x\tan xdx\)

(10) \(y=\csc x\) \({y}'=-\csc x\cot x\)

\(d(\csc x)=-\csc x\cot xdx\)

(11) \(y=\arcsin x\)

\({y}'=\frac{1}{\sqrt{1-{{x}^{2}}}}\)

\(d(\arcsin x)=\frac{1}{\sqrt{1-{{x}^{2}}}}dx\)

(12) \(y=\arccos x\)

\({y}'=-\frac{1}{\sqrt{1-{{x}^{2}}}}\) \(d(\arccos x)=-\frac{1}{\sqrt{1-{{x}^{2}}}}dx\)

(13) \(y=\arctan x\)

\({y}'=\frac{1}{1+{{x}^{2}}}\) \(d(\arctan x)=\frac{1}{1+{{x}^{2}}}dx\)

(14) \(y=\operatorname{arc}\cot x\)

\({y}'=-\frac{1}{1+{{x}^{2}}}\)

\(d(\operatorname{arc}\cot x)=-\frac{1}{1+{{x}^{2}}}dx\)

(15) \(y=shx\)

\({y}'=chx\) \(d(shx)=chxdx\)

(16) \(y=chx\)

\({y}'=shx\) \(d(chx)=shxdx\)

7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法

(1) 反函数的运算法则: 设\(y=f(x)\)在点\(x\)的某邻域内单调连续,在点\(x\)处可导且\({f}'(x)\ne 0\),则其反函数在点\(x\)所对应的\(y\)处可导,并且有\(\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}\)

(2) 复合函数的运算法则:若\(\mu =\varphi (x)\)在点\(x\)可导,而\(y=f(\mu )\)在对应点$\mu \((\)\mu =\varphi (x)\()可导,则复合函数\)y=f(\varphi (x))\(在点\)x\(可导,且\){y}'={f}'(\mu )\cdot {\varphi }'(x)$

(3) 隐函数导数\(\frac{dy}{dx}\)的求法一般有三种方法:
1)方程两边对\(x\)求导,要记住\(y\)是\(x\)的函数,则\(y\)的函数是\(x\)的复合函数.例如\(\frac{1}{y}\),\({{y}^{2}}\),\(ln y\),\({{{e}}^{y}}\)等均是\(x\)的复合函数.
对\(x\)求导应按复合函数连锁法则做.
2)公式法.由\(F(x,y)=0\)知 \(\frac{dy}{dx}=-\frac{{{{{F}'}}_{x}}(x,y)}{{{{{F}'}}_{y}}(x,y)}\),其中,\({{{F}'}_{x}}(x,y)\),
\({{{F}'}_{y}}(x,y)\)分别表示\(F(x,y)\)对\(x\)和\(y\)的偏导数
3)利用微分形式不变性

8.常用高阶导数公式

(1)\(({{a}^{x}}){{\,}^{(n)}}={{a}^{x}}{{\ln }^{n}}a\quad (a>{0})\quad \quad ({{{e}}^{x}}){{\,}^{(n)}}={e}{{\,}^{x}}\)
(2)\((\sin kx{)}{{\,}^{(n)}}={{k}^{n}}\sin (kx+n\cdot \frac{\pi }{{2}})\)
(3)\((\cos kx{)}{{\,}^{(n)}}={{k}^{n}}\cos (kx+n\cdot \frac{\pi }{{2}})\)
(4)\(({{x}^{m}}){{\,}^{(n)}}=m(m-1)\cdots (m-n+1){{x}^{m-n}}\)
(5)\((\ln x){{\,}^{(n)}}={{(-{1})}^{(n-{1})}}\frac{(n-{1})!}{{{x}^{n}}}\)
(6)莱布尼兹公式:若\(u(x)\,,v(x)\)均\(n\)阶可导,则
\({{(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{{u}^{(i)}}{{v}^{(n-i)}}}\),其中\({{u}^{({0})}}=u\),\({{v}^{({0})}}=v\)

9.微分中值定理,泰勒公式

Th1:(费马定理)

若函数\(f(x)\)满足条件:
(1)函数\(f(x)\)在\({{x}_{0}}\)的某邻域内有定义,并且在此邻域内恒有
\(f(x)\le f({{x}_{0}})\)或\(f(x)\ge f({{x}_{0}})\),

(2) \(f(x)\)在\({{x}_{0}}\)处可导,则有 \({f}'({{x}_{0}})=0\)

Th2:(罗尔定理)

设函数\(f(x)\)满足条件:
(1)在闭区间\([a,b]\)上连续;

(2)在\((a,b)\)内可导;

(3)\(f(a)=f(b)\);

则在\((a,b)\)内一存在个$\xi $,使 \({f}'(\xi )=0\)
Th3: (拉格朗日中值定理)

设函数\(f(x)\)满足条件:
(1)在\([a,b]\)上连续;

(2)在\((a,b)\)内可导;

则在\((a,b)\)内一存在个$\xi $,使 \(\frac{f(b)-f(a)}{b-a}={f}'(\xi )\)

Th4: (柯西中值定理)

设函数\(f(x)\),\(g(x)\)满足条件:

(1) 在\([a,b]\)上连续;

(2) 在\((a,b)\)内可导且\({f}'(x)\),\({g}'(x)\)均存在,且\({g}'(x)\ne 0\)

则在\((a,b)\)内存在一个$\xi $,使 \(\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{{f}'(\xi )}{{g}'(\xi )}\)

10.洛必达法则
法则Ⅰ (\(\frac{0}{0}\)型)
设函数\(f\left( x \right),g\left( x \right)\)满足条件:
\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=0\);

\(f\left( x \right),g\left( x \right)\)在\({{x}_{0}}\)的邻域内可导,(在\({{x}_{0}}\)处可除外)且\({g}'\left( x \right)\ne 0\);

\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}\)存在(或$\infty $)。

则:
\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}\)。
法则\({{I}'}\) (\(\frac{0}{0}\)型)设函数\(f\left( x \right),g\left( x \right)\)满足条件:
\(\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=0\);

存在一个\(X>0\),当\(\left| x \right|>X\)时,\(f\left( x \right),g\left( x \right)\)可导,且\({g}'\left( x \right)\ne 0\);\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}\)存在(或$\infty $)。

则:
\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}\)
法则Ⅱ(\(\frac{\infty }{\infty }\)型) 设函数\(f\left( x \right),g\left( x \right)\)满足条件:
$\underset{x\to {{x}{0}}}{\mathop{\lim }},f\left( x \right)=\infty ,\underset{x\to {{x}{0}}}{\mathop{\lim }},g\left( x \right)=\infty $; \(f\left( x \right),g\left( x \right)\)在\({{x}_{0}}\) 的邻域内可导(在\({{x}_{0}}\)处可除外)且\({g}'\left( x \right)\ne 0\);\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}\)存在(或$\infty $)。则
\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}.\)同理法则\({I{I}'}\)(\(\frac{\infty }{\infty }\)型)仿法则\({{I}'}\)可写出。

11.泰勒公式

设函数\(f(x)\)在点\({{x}_{0}}\)处的某邻域内具有\(n+1\)阶导数,则对该邻域内异于\({{x}_{0}}\)的任意点\(x\),在\({{x}_{0}}\)与\(x\)之间至少存在
一个$\xi $,使得:
$f(x)=f({{x}{0}})+{f}'({{x}{0}})(x-{{x}{0}})+\frac{1}{2!}{f}''({{x}{0}}){{(x-{{x}_{0}})}^{2}}+\cdots $
\(+\frac{{{f}^{(n)}}({{x}_{0}})}{n!}{{(x-{{x}_{0}})}^{n}}+{{R}_{n}}(x)\)
其中 \({{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{(x-{{x}_{0}})}^{n+1}}\)称为\(f(x)\)在点\({{x}_{0}}\)处的\(n\)阶泰勒余项。

令\({{x}_{0}}=0\),则\(n\)阶泰勒公式
\(f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){{x}^{2}}+\cdots +\frac{{{f}^{(n)}}(0)}{n!}{{x}^{n}}+{{R}_{n}}(x)\)……(1)
其中 \({{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{x}^{n+1}}\),$\xi \(在0与\)x$之间.(1)式称为麦克劳林公式

常用五种函数在\({{x}_{0}}=0\)处的泰勒公式

(1) \({{{e}}^{x}}=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+\frac{{{x}^{n+1}}}{(n+1)!}{{e}^{\xi }}\)

或 \(=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+o({{x}^{n}})\)

(2) \(\sin x=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi )\)

或 \(=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+o({{x}^{n}})\)

(3) \(\cos x=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\cos (\xi +\frac{n+1}{2}\pi )\)

或 \(=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+o({{x}^{n}})\)

(4) \(\ln (1+x)=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+\frac{{{(-1)}^{n}}{{x}^{n+1}}}{(n+1){{(1+\xi )}^{n+1}}}\)

或 \(=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+o({{x}^{n}})\)

(5) \({{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}\)
\(+\frac{m(m-1)\cdots (m-n+1)}{(n+1)!}{{x}^{n+1}}{{(1+\xi )}^{m-n-1}}\)

或 ${{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots $ \(+\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}+o({{x}^{n}})\)

12.函数单调性的判断
Th1: 设函数\(f(x)\)在\((a,b)\)区间内可导,如果对\(\forall x\in (a,b)\),都有\(f\,'(x)>0\)(或\(f\,'(x)<0\)),则函数\(f(x)\)在\((a,b)\)内是单调增加的(或单调减少)

Th2: (取极值的必要条件)设函数\(f(x)\)在\({{x}_{0}}\)处可导,且在\({{x}_{0}}\)处取极值,则\(f\,'({{x}_{0}})=0\)。

Th3: (取极值的第一充分条件)设函数\(f(x)\)在\({{x}_{0}}\)的某一邻域内可微,且\(f\,'({{x}_{0}})=0\)(或\(f(x)\)在\({{x}_{0}}\)处连续,但\(f\,'({{x}_{0}})\)不存在。)
(1)若当\(x\)经过\({{x}_{0}}\)时,\(f\,'(x)\)由“+”变“-”,则\(f({{x}_{0}})\)为极大值;
(2)若当\(x\)经过\({{x}_{0}}\)时,\(f\,'(x)\)由“-”变“+”,则\(f({{x}_{0}})\)为极小值;
(3)若\(f\,'(x)\)经过\(x={{x}_{0}}\)的两侧不变号,则\(f({{x}_{0}})\)不是极值。

Th4: (取极值的第二充分条件)设\(f(x)\)在点\({{x}_{0}}\)处有\(f''(x)\ne 0\),且\(f\,'({{x}_{0}})=0\),则 当\(f'\,'({{x}_{0}})<0\)时,\(f({{x}_{0}})\)为极大值;
当\(f'\,'({{x}_{0}})>0\)时,\(f({{x}_{0}})\)为极小值。
注:如果\(f'\,'({{x}_{0}})<0\),此方法失效。

13.渐近线的求法
(1)水平渐近线 若\(\underset{x\to +\infty }{\mathop{\lim }}\,f(x)=b\),或\(\underset{x\to -\infty }{\mathop{\lim }}\,f(x)=b\),则

\(y=b\)称为函数\(y=f(x)\)的水平渐近线。

(2)铅直渐近线 若$\underset{x\to x_{0}^{-}}{\mathop{\lim }},f(x)=\infty \(,或\)\underset{x\to x_{0}^{+}}{\mathop{\lim }},f(x)=\infty $,则

\(x={{x}_{0}}\)称为\(y=f(x)\)的铅直渐近线。

(3)斜渐近线 若\(a=\underset{x\to \infty }{\mathop{\lim }}\,\frac{f(x)}{x},\quad b=\underset{x\to \infty }{\mathop{\lim }}\,[f(x)-ax]\),则
\(y=ax+b\)称为\(y=f(x)\)的斜渐近线。

14.函数凹凸性的判断
Th1: (凹凸性的判别定理)若在I上\(f''(x)<0\)(或\(f''(x)>0\)),则\(f(x)\)在I上是凸的(或凹的)。

Th2: (拐点的判别定理1)若在\({{x}_{0}}\)处\(f''(x)=0\),(或\(f''(x)\)不存在),当\(x\)变动经过\({{x}_{0}}\)时,\(f''(x)\)变号,则\(({{x}_{0}},f({{x}_{0}}))\)为拐点。

Th3: (拐点的判别定理2)设\(f(x)\)在\({{x}_{0}}\)点的某邻域内有三阶导数,且\(f''(x)=0\),\(f'''(x)\ne 0\),则\(({{x}_{0}},f({{x}_{0}}))\)为拐点。

15.弧微分

\(dS=\sqrt{1+y{{'}^{2}}}dx\)

16.曲率

曲线\(y=f(x)\)在点\((x,y)\)处的曲率\(k=\frac{\left| y'' \right|}{{{(1+y{{'}^{2}})}^{\tfrac{3}{2}}}}\)。
对于参数方程\(\left\{ \begin{align} & x=\varphi (t) \\ & y=\psi (t) \\ \end{align} \right.,\)\(k=\frac{\left| \varphi '(t)\psi ''(t)-\varphi ''(t)\psi '(t) \right|}{{{[\varphi {{'}^{2}}(t)+\psi {{'}^{2}}(t)]}^{\tfrac{3}{2}}}}\)。

17.曲率半径

曲线在点\(M\)处的曲率\(k(k\ne 0)\)与曲线在点\(M\)处的曲率半径$\rho \(有如下关系:\)\rho =\frac{1}{k}$。

上一篇:拉格朗日对偶性


下一篇:MySQL Generic Binaries包和RPM包的区别?