题意
给定一个长为\(n\)的序列\(\{a_i\}\),等概率随机一个长为\(n\)的排列\(\{p_i\}\),求\(\{a_{p_i}\}\)的后缀积的和的期望。
\(1\le n\le 10^5,1\le a_i\le 10^9\)
题解
答案即为
\[\frac{1}{n!}\sum_{p}\sum_{i=1}^{n}\prod_{j\ge i}a_{p_{j}}. \]我们考虑一个长为\(k\)的项\(\prod_{j=1}^{k}a_{q_{j}}\)会在分子中出现多少次,相当于序列的后\(k\)个数随机排列,前\(n-k\)个数随机排列的方案数,故出现次数为\(k!(n-k)!\)。记\(S=\{1,2,3,...,n\}\),则答案可以改写成
\[\frac{1}{n!}\sum_{p}\sum_{i=1}^{n}\prod_{j\ge i}a_{p_{j}}=\frac{1}{n!}\sum_{k=1}^{n}k!(n-k)!\sum_{T\subset S,|T|=k}\prod_{i\in T}a_i=\sum_{k=1}^{n}\frac{k!(n-k)!}{n!}\sum_{T\subset S,|T|=k}\prod_{i\in T}a_i=\sum_{k=1}^n\frac{\sum_{T\subset S,|T|=k}\prod_{i\in T}a_i}{\binom{n}{k}}, \]而
\[\sum_{T\subset S,|T|=k}\prod_{i\in T}a_i=[x^k]\prod_{i=1}^{n}(1+a_i x), \]于是分治计算\(\prod_{i=1}^n(1+a_i x)\)即可。复杂度\(O(n\log^2n )\)
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
const int mod=998244353;
const int N=100005;
const double pi=acos(-1.0);
inline int add(int x,int y){x+=y;return x>=mod?x-mod:x;}
inline int mul(int x,int y){return 1ll*x*y%mod;}
int pm(int x,int y){
int res=1;
while(y){
if(y&1) res=mul(res,x);
x=mul(x,x),y>>=1;
}
return res;
}
inline int getinv(int x){return pm(x,mod-2);}
inline int getN(int x){
int N=1;
while(N<=x) N<<=1;
return N;
}
const int maxn=1<<18;
namespace Poly{
int inv[maxn];
void init(int N){
inv[0]=inv[1]=1;
for(int i=2;i<N;i++) inv[i]=mul(inv[mod%i],mod-mod/i);
}
void ntt(int *A,int N,int opt){
for(int i=0,j=0;i<N;i++){
if(i<j) swap(A[i],A[j]);
for(int l=(N>>1);(j^=l)<l;l>>=1);
}
for(int l=2;l<=N;l<<=1){
int m=(l>>1),w0=pm(3,(mod-1)/l);
if(opt==-1) w0=getinv(w0);
for(int j=0;j<N;j+=l)
for(int i=j,w=1;i<j+m;i++,w=mul(w,w0)){
int v=mul(A[i+m],w);
A[i+m]=add(A[i],mod-v);
A[i]=add(A[i],v);
}
}
if(opt==-1){
int tmp=getinv(N);
for(int i=0;i<N;i++) A[i]=mul(A[i],tmp);
}
}
}
using Poly::ntt;
using poly=vector<int>;
int A[maxn],B[maxn],C[maxn];
poly polymul(poly a,poly b){
poly c;
int n=a.size()-1,m=b.size()-1;
c.resize(n+m+1);
int N=getN(n+m);
for(int i=0;i<=n;i++) A[i]=a[i];
for(int i=n+1;i<N;i++) A[i]=0;
for(int i=0;i<=m;i++) B[i]=b[i];
for(int i=m+1;i<N;i++) B[i]=0;
ntt(A,N,1),ntt(B,N,1);
for(int i=0;i<N;i++) A[i]=mul(A[i],B[i]);
ntt(A,N,-1);
for(int i=0;i<=n+m;i++) c[i]=A[i];
return c;
}
int n,b[N];
poly sol(int l,int r){
if(l==r){return poly{1,b[l]};}
int mid=l+r>>1;
return polymul(sol(l,mid),sol(mid+1,r));
}
ll ss[N],invs[N];
ll binom(int n,int m){return ss[n]*invs[m]%mod*invs[n-m]%mod;}
void f1(){
ss[0]=1;
scanf("%d",&n);
for(int i=1;i<=n;i++){
ss[i]=ss[i-1]*i%mod;
scanf("%d",&b[i]);
}
invs[n]=pm(ss[n],mod-2);
for(int i=n-1;i>=0;i--)invs[i]=invs[i+1]*(i+1)%mod;
poly res=sol(1,n);
ll ans=0;
for(int i=1;i<=n;i++){
ans=(ans+1ll*res[i]*getinv(binom(n,i))%mod)%mod;
}
printf("%lld\n",ans);
}
int main(){
int t;scanf("%d",&t);
while(t--)
f1();
return 0;
}