Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal stack (push, top, pop, and empty).
Implement the MyStack class:
- void push(int x) Pushes element x to the top of the stack.
- int pop() Removes the element on the top of the stack and returns it.
- int top() Returns the element on the top of the stack.
- boolean empty() Returns true if the stack is empty, false otherwise.
Notes: - You must use only standard operations of a queue, which means that only push to back, peek/pop from front, size and is empty operations are valid.
- Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue) as long as you use only a queue's standard operations.
Example1:
Input
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 2, 2, false]
Explanation
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False
Constraints:
- 1 <= x <= 9
- At most 100 calls will be made to push, pop, top, and empty.
- All the calls to pop and top are valid.
这道题的思路是准备两个queue和一个integer来记录top,每次加入的时候,就加入到应用queue里,并且更新top的值。这个过程是O(1)。pop的时候,把应用queue里除了最后一个值都加入到准备queue里。同时top也要随着这个过程不停更新。最后top就停留在之前应用queue的倒数第二个值。这时候把应用queue的最后一个值弹出,这就是最后要返回的值。但是在返回之前,把应用queue和准备queue的名字互换。这个过程是O(n)。top就直接返回top,empty就返回是否size为0. 这两个过程都是O(1)
注意:
- queue的loop的时候,必须要把size的值在第一次就取出来,queue的size会动态变化。
- top可以用一个数值来记住。在queue的push和pop的过程中动态更新,函数被调用的时候直接返回就行。
class MyStack {
Queue<Integer> useq;
Queue<Integer> waitq;
int top;
public MyStack() {
useq = new LinkedList<Integer>();
waitq = new LinkedList<Integer>();
top = Integer.MIN_VALUE;
}
public void push(int x) {
this.useq.offer(x);
this.top = x;
}
public int pop() {
if (!empty()){
int n = useq.size();
for (int i = 0; i < n - 1; i++) {
this.top = useq.poll();
this.waitq.offer(top);
}
int rst = useq.poll();
Queue<Integer> tmp = this.useq;
this.useq = this.waitq;
this.waitq = tmp;
return rst;
} else {
return Integer.MIN_VALUE;
}
}
public int top() {
return top;
}
public boolean empty() {
return useq.size() == 0;
}
}
/**
* Your MyStack object will be instantiated and called as such:
* MyStack obj = new MyStack();
* obj.push(x);
* int param_2 = obj.pop();
* int param_3 = obj.top();
* boolean param_4 = obj.empty();
*/