C++ little errors , Big problem

------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------

Q1. compile caffe .cpp file ,   come out an error :

d302@d302-MS-7816-04:~/wangxiao/spl-caffe-master$ make -j8
NVCC src/caffe/layers/euclidean_loss_layer.cu
src/caffe/layers/euclidean_loss_layer.cu(43): error: a value of type "const float *" cannot be used to initialize an entity of type "float *"
          detected during instantiation of "void caffe::EuclideanLossLayer<Dtype>::Backward_gpu(const std::vector<caffe::Blob<Dtype> *, std::allocator<caffe::Blob<Dtype> *>> &, const std::vector<__nv_bool, std::allocator<__nv_bool>> &, const std::vector<caffe::Blob<Dtype> *, std::allocator<caffe::Blob<Dtype> *>> &) [with Dtype=float]"
(105): here

the original code is :

 

 1             Dtype* diff_cpu_data = bottom[i]->mutable_cpu_diff();
 2       const Dtype* label_data = bottom[1]->cpu_data();    // label data: 0 or 1
 3       const Dtype* predict_data = bottom[0]->cpu_data();  // predict data
 4        
 5       int spl_num = 0;
 6       int al_num = 0;
 7 
 8       for(int id = 0; id < bottom[i]->count(); ++id) {    // 35*12=420 
 9         
10         // Self Paced Learning 
11         if (label_data[id]==0){  
12           // negative samples ... do nothing 
13         }
14         else{
15           if(predict_data[id]>0.7 && label_data[id]==1 ) {
16               spl_num ++ ;
17             // if the condition is met,  transmit the gradient  
18             // else  make the gradient equal to zero...
19           } 
20           else {
21             diff_cpu_data[id] = 0;
22             // bottom[i]->mutable_cpu_diff()[id] = 0;
23           }
24         }
25 
26 
27         // Active Learning 
28         if (0.4 < predict_data[id] && predict_data[id] < 0.5){
29            
30           if (label_data[id] == 1){
31 
32             predict_data[id] = 1 ;
33           }else
34           if (label_data[id] == 0){
35             predict_data[id] = 0 ;
36           }
37 
38           al_num++;
39           
40         }

 

 

 

 

Solution 1: No solution, because the char* can not give to const char*, and the value of const char* can not be changed .  and in my problem, we don't need change the predict score at all.

 

------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------

Q2. when trained a AlexNet caffe model, and use the Matlab Interface to extract Features or predicted Scores , However it tell me errors like the following :

C++   little errors , Big problem

d302@d302-MS-7816-04:~$ matlab
libprotobuf ERROR google/protobuf/text_format.cc:172] Error parsing text-format caffe.NetParameter: 339:2: Expected identifier.
WARNING: Logging before InitGoogleLogging() is written to STDERR
F0116 15:34:34.112346 25564 upgrade_proto.cpp:928] Check failed: ReadProtoFromTextFile(param_file, param) Failed to parse NetParameter file: ../../models/bvlc_alexnet/alex_hat_deploy.prototxt
*** Check failure stack trace: ***
Killed


Solution 2: layer 6 was repaired when I train my model , i.e.

layer {
  name: "fc6_wx"
  type: "InnerProduct"
  bottom: "pool5"
  top: "fc6_wx"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}

change the name: "fc6_wx"  into name: "fc6", and it will be OK .

------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------

 

上一篇:边缘容器介绍(ACK Edge Kubernetes)


下一篇:caffe: test code for Deep Learning approach