题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=1297
题解
如果每一条边没有边权,那么就是一般的矩阵快速幂。
因为边权 \(\in [1, 9]\),所以我们可以把每一个点拆成 \(9\) 个点,对于一条边权为 \(w\) 的边 \(x \to y\),可以建立一条边 \(x_{w-1}\to y_0\)。
然后 \(x_i\to x_{i+1}\) 连边。
然后矩阵快速幂就可以了。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 90 + 3;
const int P = 2009;
int n, m, T;
char s[N];
inline int smod(int x) { return x >= P ? x - P : x; }
inline void sadd(int &x, const int &y) { x += y; x >= P ? x -= P : x; }
inline int fpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = x * x % P) if (y & 1) ans = ans * x % P;
return ans;
}
struct Matrix {
int a[N][N];
inline Matrix() { memset(a, 0, sizeof(a)); }
inline Matrix(const int &x) {
memset(a, 0, sizeof(a));
for (int i = 1; i <= m; ++i) a[i][i] = x;
}
inline Matrix operator * (const Matrix &b) {
Matrix c;
for (int k = 1; k <= m; ++k)
for (int i = 1; i <= m; ++i)
for (int j = 1; j <= m; ++j)
sadd(c.a[i][j], a[i][k] * b.a[k][j] % P);
return c;
}
} A;
inline Matrix fpow(Matrix x, int y) {
Matrix ans(1);
for (; y; y >>= 1, x = x * x) if (y & 1) ans = ans * x;
return ans;
}
inline void work() {
m = 9 * n;
A = fpow(A, T);
printf("%d\n", A.a[1][n]);
}
inline void init() {
read(n), read(T);
for (int i = 1; i <= n; ++i) {
scanf("%s", s + 1);
for (int j = 1; j <= n; ++j)
if (s[j] != '0') A.a[i + (s[j] - '1') * n][j] = 1;
}
for (int i = 1; i <= n; ++i)
for (int j = 0; j < 9 - 1; ++j)
A.a[i + j * n][i + (j + 1) * n] = 1;
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}