实战:分布式令牌桶限流
本节介绍的分布式令牌桶限流通过Lua+Java结合完成,首先在Lua脚本中完成限流的计算,然后在Java代码中进行组织和调用。
分布式令牌桶限流Lua脚本
分布式令牌桶限流Lua脚本的核心逻辑和Java令牌桶的执行逻辑类似,只是限流计算相关的统计和时间数据存放于Redis中。
这里将限流的脚本命名为rate_limiter.lua,该脚本既使用Redis存储令牌桶信息,自身又执行于Redis中,所以笔者将该脚本放置于base-redis基础模块中,它的代码如下:
---此脚本的环境:redis内部,不是运行在Nginx内部
---方法:申请令牌
----1:failed
---1:success
---@param key:key限流关键字
---@param apply:申请的令牌数量
local function acquire(key, apply)
local times=redis.call('TIME');
--times[1] 秒数 --times[2] 微秒数
local curr_mill_second=times[1] *1000000 + times[2];
curr_mill_second=curr_mill_second / 1000;
local cacheInfo=redis.pcall("HMGET", key, "last_mill_second", "curr_permits", "max_permits", "rate")
---局部变量:上次申请的时间
local last_mill_second=cacheInfo[1];
---局部变量:之前的令牌数
local curr_permits=tonumber(cacheInfo[2]);
---局部变量:桶的容量
local max_permits=tonumber(cacheInfo[3]);
---局部变量:令牌的发放速率
local rate=cacheInfo[4];
---局部变量:本次的令牌数
local local_curr_permits=max_permits;
if (type(last_mill_second) ~='boolean' and last_mill_second ~=nil) then
--计算时间段内的令牌数
local reverse_permits=math.floor(((curr_mill_second - last_mill_second) / 1000) *rate);
--令牌总数
local expect_curr_permits=reverse_permits + curr_permits;
--可以申请的令牌总数
local_curr_permits=math.min(expect_curr_permits, max_permits);
else
--第一次获取令牌
redis.pcall("HSET", key, "last_mill_second", curr_mill_second)
end
local result=-1;
--有足够的令牌可以申请
if (local_curr_permits - apply >=0) then
--保存剩余的令牌
redis.pcall("HSET", key, "curr_permits", local_curr_permits - apply);
--保存时间,下次令牌获取时使用
redis.pcall("HSET", key, "last_mill_second", curr_mill_second)
--返回令牌获取成功
result=1;
else
--保存令牌总数
redis.pcall("HSET", key, "curr_permits", local_curr_permits);
--返回令牌获取失败
result=-1;
end
return result
end
---方法:初始化限流器
---1 success
---@param key key
---@param max_permits 桶的容量
---@param rate 令牌的发放速率
local function init(key, max_permits, rate)
local rate_limit_info=redis.pcall("HMGET", key, "last_mill_second", "curr_permits", "max_permits", "rate")
local org_max_permits=tonumber(rate_limit_info[3])
local org_rate=rate_limit_info[4]
if (org_max_permits==nil) or (rate ~=org_rate or max_permits ~=org_max_permits) then
redis.pcall("HMSET", key, "max_permits", max_permits, "rate", rate, "curr_permits", max_permits)
end
return 1;
end
---方法:删除限流Key
local function delete(key)
redis.pcall("DEL", key) return 1;
end
local key=KEYS[1]
local method=ARGV[1]
if method=='acquire' then
return acquire(key, ARGV[2], ARGV[3])
elseif method=='init' then
return init(key, ARGV[2], ARGV[3])
elseif method=='delete' then
return delete(key)
else
--ignore
end
该脚本有3个方法,其中两个方法比较重要,分别说明如下:
(1)限流器初始化方法init(key,max_permits,rate),此方法在限流开始时被调用。
(2)限流检测的方法acquire(key,apply),此方法在请求到来时被调用。
Java分布式令牌桶限流
rate_limiter.lua脚本既可以在Java中调用,又可以在Nginx中调用。本小节先介绍其在Java中的使用,第10章再介绍其在Nginx中的使用。
Java分布式令牌桶限流器的实现就是通过Java代码向Redis加载rate_limiter.lua脚本,然后封装其令牌桶初始化方法init(...)和限流监测方法acquire(...),以供外部调用。它的代码如下:
package com.crazymaker.springcloud.standard.ratelimit;
...
/**
*实现:令牌桶限流服务
*create by尼恩 @ 富贵论坛
**/
@Slf4j
public class RedisRateLimitImpl implements RateLimitService, InitializingBean
{
/**
*限流器的redis key前缀
*/
private static final String RATE_LIMITER_KEY_PREFIX="rate_limiter:";
//private ScheduledExecutorService executorService=Executors.newScheduledThreadPool(1);
private RedisRateLimitProperties redisRateLimitProperties;
private RedisTemplate redisTemplate;
//lua脚本的实例
private static RedisScript rateLimiterScript=null;
//lua脚本的类路径
private static String rateLimitLua="script/rate_limiter.lua";
static
{
//从类路径文件中加载令牌桶lua脚本
String script=IOUtil.loadJarFile(RedisRateLimitImpl.class.getClassLoader(), rateLimitLua);
if (StringUtils.isEmpty(script))
{
log.error("lua script load failed:" + rateLimitLua);
} else
{
//创建Lua脚本实例
rateLimiterScript=new DefaultRedisScript<>(script, Long.class);
}
}
public RedisRateLimitImpl(
RedisRateLimitProperties redisRateLimitProperties,
RedisTemplate redisTemplate)
{
thisisRateLimitProperties=redisRateLimitProperties;
thisisTemplate=redisTemplate;
}
private Map<String, LimiterInfo> limiterInfoMap=new HashMap<>();
/**
*限流器的信息
*/
@Builder
@Data
public static class LimiterInfo
{
/**
*限流器的key,如秒杀的id
*/ private String key;
/**
*限流器的类型,如seckill
*/
private String type="default";
/**
*限流器的最大桶容量
*/
private Integer maxPermits;
/**
*限流器的速率
*/
private Integer rate;
/**
*限流器的redis key
*/
public String fullKey()
{
return RATE_LIMITER_KEY_PREFIX + type + ":" + key;
}
/**
*限流器在map中的缓存key
*/
public String cashKey()
{
return type + ":" + key;
}
}
/**
*限流检测:是否超过redis令牌桶限速器的限制
*
*@param cacheKey计数器的key
*@return true or false
*/
@Override
public Boolean tryAcquire(String cacheKey)
{
if (cacheKey==null)
{
return true;
}
if (cacheKey.indexOf(":") <=0)
{
cacheKey="default:" + cacheKey;
}
LimiterInfo limiterInfo=limiterInfoMap.get(cacheKey);
if (limiterInfo==null)
{
return true;
}
Long acquire=(Long) redisTemplate.execute(rateLimiterScript,
ImmutableList.of(limiterInfo.fullKey()),
"acquire",
"1");
if (acquire==1)
{
return false;
}
return true;
}
/**
*重载方法:限流器初始化
*
*@param limiterInfo限流的类型
*/
public void initLimitKey(LimiterInfo limiterInfo)
{
if (null==rateLimiterScript)
{
return;
}
String maxPermits=limiterInfo.getMaxPermits().toString();
String rate=limiterInfo.getRate().toString();
//执行redis脚本
Long result=(Long) redisTemplate.execute(rateLimiterScript,
ImmutableList.of(limiterInfo.fullKey()),
"init",
maxPermits,
rate); limiterInfoMap.put(limiterInfo.cashKey(), limiterInfo);
}
/**
*限流器初始化
*
*@param type类型
*@param key id
*@param maxPermits上限
*@param rate 速度
*/
public void initLimitKey(String type, String key,
Integer maxPermits, Integer rate)
{
LimiterInfo limiterInfo=LimiterInfo.builder()
.type(type)
.key(key)
.maxPermits(maxPermits)
.rate(rate)
.build();
initLimitKey(limiterInfo);
}
/**
*获取redis lua脚本的sha1编码,并缓存到redis
*/
public String cacheSha1()
{
String sha1=rateLimiterScript.getSha1();
redisTemplate.opsForValue().set("lua:sha1:rate_limiter", sha1);
return sha1;
}
}Java分布式令牌桶限流的自验证
自验证的工作:首先初始化分布式令牌桶限流器,然后使用两条
线程不断进行限流的检测。自验证的代码如下:
package com.crazymaker.springcloud.ratelimit;
...
@Slf4j
@RunWith(SpringRunner.class)
//指定启动类
@SpringBootTest(classes={DemoCloudApplication.class})
/**
*redis分布式令牌桶测试类
*/
public class RedisRateLimitTest
{
@Resource(name="redisRateLimitImpl")
RedisRateLimitImpl limitService;
//线程池,用于多线程模拟测试
private ExecutorService pool=Executors.newFixedThreadPool(10);
@Test
public void testRedisRateLimit()
{
//初始化分布式令牌桶限流器
limitService.initLimitKey(
"seckill", //redis key中的类型
"10000", //redis key中的业务key,比如商品id
2, //桶容量
2); //每秒令牌数
AtomicInteger count=new AtomicInteger();
long start=System.currentTimeMillis();
//线程数
final int threads=2;
//每条线程的执行轮数
final int turns=20;
//同步器
CountDownLatch countDownLatch=new CountDownLatch(threads);
for (int i=0; i < threads; i++)
{
pool.submit(() ->
{
try
{
//每个用户访问turns次
for (int j=0; j < turns; j++)
{
boolean limited=limitService.tryAcquire
("seckill:10000");
if (limited)
{
count.getAndIncrement();
}
Thread.sleep(200);
}
} catch (Exception e)
{ e.printStackTrace();
}
countDownLatch.countDown();
});
}
try
{
countDownLatch.await();
} catch (InterruptedException e)
{
e.printStackTrace();
}
float time=(System.currentTimeMillis() - start) / 1000F;
//输出统计结果
log("限制的次数为:" + count.get() + " 时长为:" + time);
log("限制的次数为:" + count.get() +
",通过的次数为:" + (threads *turns - count.get()));
log("限制的大专比例为:" +
(float) count.get() / (float) (threads *turns));
log("运行的时长为:" + time);
try
{
Thread.sleep(Integer.MAX_VALUE);
} catch (InterruptedException e)
{
e.printStackTrace();
}
}
}
两条线程各运行20次,每一次运行休眠200毫秒,总计耗时4秒,
运行40次,部分输出结果如下:
[main] INFO c.c.s.risRateLimitTest - 限制的次数为:32 时长为:4.015
[main] INFO c.c.s.risRateLimitTest - 限制的次数为:32,通过的次数为:8
[main] INFO c.c.s.risRateLimitTest - 限制的比例为:0.8
[main] INFO c.c.s.risRateLimitTest - 运行的时长为:4.015
大家可以自行调整参数,运行以上自验证程序并观察实验结果,体验一下分布式令牌桶限流的效果。
本文给大家讲解的内容是高并发核心编程,限流原理与实战,实战:分布式令牌桶限流下篇文章给大家讲解的是高并发核心编程,Spring Cloud+Nginx秒杀实战;觉得文章不错的朋友可以转发此文关注小编;感谢大家的支持!