Hive记录-Hive介绍(转载)

1.Hive是什么?

Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的 SQL 查询功能,将类 SQL 语句转换为 MapReduce 任务执行。

Hive记录-Hive介绍(转载)

2.Hive数据结构-HDFS-Table-Partiton-Bucket

  • Table:每个表存储在HDFS上的一个目录下
  • Partition(可选):每个Partition存储再Table的子目录下
  • Bucket(可选):某个Partition根据某个列的hash值散列到不同的Bucket中,每个Bucket是一个文件

3.Hive架构

Hive记录-Hive介绍(转载)

由上图可知,hadoop 和 mapreduce 是 hive 架构的根基。

MetaStore:存储和管理Hive的元数据,使用关系数据库来保存元数据信息。

解释器和编译器:将SQL语句生成语法树,然后再生成DAG,成为逻辑计划

优化器:只提供了基于规则的优化

       列过滤:只查询投影列

       行过滤:子查询where语句包含的partition

       谓词下推:减少后面的数据量

      Join方式

                 Map join:一大一小的表,将小表广播(指定后在执行前统计,没有数据直方图)

                shuffle join:按照hash函数,将两张表的数据发送给join

                sort merge join:排序,按照顺序切割数据,相同的范围发送给相同的节点(运行前在后台创建立两张排序表,或者建表的时候指定)

执行器:执行器将DAG转换为MR任务

4.Hive特点

·Hive 最大的特点是 Hive 通过类 SQL 来分析大数据,而避免了写 MapReduce 程序来分析数据,这样使得分析数据更容易

·Hive 是将数据映射成数据库和一张张的表,库和表的元数据信息一般存在关系型数据库上(比如 MySQL)

·Hive 本身并不提供数据的存储功能,数据一般都是存储在 HDFS 上的(对数据完整性、格式要求并不严格)

·Hive 很容易扩展自己的存储能力和计算能力,这个是继承自 hadoop 的(适用于大规模的并行计算)

·Hive 是专为 OLAP 设计,不支持事务

5.Hive流程

Hive记录-Hive介绍(转载)

执行流程详细解析



Step 1:UI(user interface) 调用 executeQuery 接口,发送 HQL 查询语句给 Driver

Step 2:Driver 为查询语句创建会话句柄,并将查询语句发送给 Compiler, 等待其进行语句解析并生成执行计划

Step 3 and 4:Compiler 从 metastore 获取相关的元数据

Step 5:元数据用于对查询树中的表达式进行类型检查,以及基于查询谓词调整分区,生成计划

Step 6 (6.1,6.2,6.3):由 Compiler 生成的执行计划是阶段性的 DAG,每个阶段都可能会涉及到 Map/Reduce job、元数据的操作、HDFS 文件的操作,Execution Engine 将各个阶段的 DAG 提交给对应的组件执行。

Step 7, 8 and 9:在每个任务(mapper / reducer)中,查询结果会以临时文件的方式存储在 HDFS 中。保存查询结果的临时文件由 Execution Engine 直接从 HDFS 读取,作为从 Driver Fetch API 的返回内容。

容错(依赖于 Hadoop 的容错能力)

Hive 的执行计划在 MapReduce 框架上以作业的方式执行,每个作业的中间结果文件写到本地磁盘,从而达到作业的容错性。

最终输出文件写到 HDFS 文件系统,利用 HDFS 的多副本机制来保证数据的容错性。

6.Hive缺陷

MapReduce:

Map任务结束后,要写磁盘

一个MapReduce任务结束后,需要将中间结果持久化到HDFS

DAG生成MapReduce任务时,会产生无谓的Map任务

Hadoop在启动MapReduce任务要消耗5-10秒,需要多次启动MapReduce任务

7.SparkSQL

SparkSQL在架构上和Hive类似,只是底层把执行引擎MapReduce替换为执行引擎Spark

上一篇:「python」: arp脚本的两种方法


下一篇:Win10系列:VC++媒体播放控制2