题目链接:uva 11123 - Counting Trapizoid
题目大意:给定若干个点,问有多少种梯形,不包括矩形,梯形的面积必须为正数。因为是点的集合,所以不会优重复的点。
解题思路:枚举两两点,求出该条直线,包括斜率k,偏移值c,以及长度l。已知梯形的性质,一对对边平行,也就是说一对平行但是不相等的边。
所以将所有线段按照斜率排序,假设对于某一斜率,有m条边,那么这m条边可以组成的含平行对边的四边形有C(2m),要求梯形还要减掉长度相同以及共线的情况,分别对应的是l相同和c相同,但是根据容斥原理,要加回l和c均相等的部分。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 205;
const double eps = 1e-9;
const double pi = 4 * atan(1.0);
struct line {
double k, c, l;
line (double k, double c = 0, double l = 0) {
this->k = k;
this->c = c;
this->l = l;
}
friend bool operator < (const line& a, const line& b) {
return a.k < b.k;
}
};
struct state {
double c, l;
state (double c, double l) {
this->c = c;
this->l = l;
}
};
int n;
double x[N], y[N];
vector<line> set;
vector<state> g;
inline double distant (double xi, double yi) {
return xi * xi + yi * yi;
}
inline double cal (int a, int b) {
if (x[a] == x[b])
return x[a];
return y[a] - x[a] * ( (y[a] - y[b]) / (x[a] - x[b]) );
}
inline int C (int a) {
if (a < 1)
return 0;
return a * (a - 1) / 2;
}
inline bool cmpC (const state& a, const state& b) {
if (fabs(a.c-b.c) > eps)
return a.c < b.c;
return a.l < b.l;
}
inline bool cmpL (const state& a, const state& b) {
return a.l < b.l;
}
int judge () {
sort(g.begin(), g.end(), cmpC);
int ans = 0, cnt = 1, tmp = 1;
/*
for (int i = 0; i < g.size(); i++) {
printf("%lf %lf\n", g[i].c, g[i].l);
}
printf("\n");
*/
for (int i = 1; i < g.size(); i++) {
if (fabs(g[i].c - g[i-1].c) > eps) {
ans = ans + C(cnt) - C(tmp);
cnt = 0;
tmp = 0;
}
if (fabs(g[i].l - g[i-1].l) > eps) {
ans = ans - C(tmp);
tmp = 0;
}
tmp++;
cnt++;
}
ans = ans + C(cnt) - C(tmp);
sort(g.begin(), g.end(), cmpL);
cnt = 1;
for (int i = 1; i < g.size(); i++) {
if (fabs(g[i].l - g[i-1].l) > eps) {
ans = ans + C(cnt);
cnt = 0;
}
cnt++;
}
ans = ans + C(cnt);
return ans;
}
int solve () {
int ans = 0;
if (set.size() == 0)
return 0;
g.clear();
g.push_back(state(set[0].c, set[0].l));
for (int i = 1; i < set.size(); i++) {
//printf("%d %lf!!!!!!!\n", i, set[i].k);
if (fabs(set[i].k - set[i-1].k) > eps) {
ans += C(g.size()) - judge();
g.clear();
}
g.push_back(state(set[i].c, set[i].l));
}
ans += C(g.size()) - judge();
return ans;
}
int main () {
int cas = 1;
while (scanf("%d", &n) == 1 && n) {
set.clear();
for (int i = 0; i < n; i++) {
scanf("%lf%lf", &x[i], &y[i]);
for (int j = 0; j < i; j++)
set.push_back(line( atan2(y[j]-y[i], x[j]-x[i]), cal(i, j), distant(y[i]-y[j], x[i]-x[j]) ));
}
for (int i = 0; i < set.size(); i++) {
if (set[i].k < eps)
set[i].k += pi;
}
sort(set.begin(), set.end());
/*
for (int i = 0; i < set.size(); i++) {
printf("%d %lf %lf %lf\n", i, set[i].k, set[i].c, set[i].l);
}
*/
printf("Case %d: %d\n", cas++, solve());
}
return 0;
}