1.send和recv的传输层流程
首先进入socketcall函数,socketcall函数是所有socket函数进入内核空间的共同入口
socketcall的定义如下
SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
{
unsigned long a[AUDITSC_ARGS];
unsigned long a0, a1;
int err;
unsigned int len;
if (call < 1 || call > SYS_SENDMMSG)
return -EINVAL;
call = array_index_nospec(call, SYS_SENDMMSG + 1);
len = nargs[call];
if (len > sizeof(a))
return -EINVAL;
/* copy_from_user should be SMP safe. */
if (copy_from_user(a, args, len))
return -EFAULT;
err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
if (err)
return err;
a0 = a[0];
a1 = a[1];
switch (call) {
case SYS_SOCKET:
err = __sys_socket(a0, a1, a[2]);
break;
case SYS_BIND:
err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
break;
case SYS_CONNECT:
err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
break;
case SYS_LISTEN:
err = __sys_listen(a0, a1);
break;
case SYS_ACCEPT:
err = __sys_accept4(a0, (struct sockaddr __user *)a1,
(int __user *)a[2], 0);
break;
case SYS_GETSOCKNAME:
err =
__sys_getsockname(a0, (struct sockaddr __user *)a1,
(int __user *)a[2]);
break;
case SYS_GETPEERNAME:
err =
__sys_getpeername(a0, (struct sockaddr __user *)a1,
(int __user *)a[2]);
break;
case SYS_SOCKETPAIR:
err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
break;
case SYS_SEND:
err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
NULL, 0);
break;
case SYS_SENDTO:
err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
(struct sockaddr __user *)a[4], a[5]);
break;
case SYS_RECV:
err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
NULL, NULL);
break;
case SYS_RECVFROM:
err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
(struct sockaddr __user *)a[4],
(int __user *)a[5]);
break;
case SYS_SHUTDOWN:
err = __sys_shutdown(a0, a1);
break;
case SYS_SETSOCKOPT:
err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
a[4]);
break;
case SYS_GETSOCKOPT:
err =
__sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
(int __user *)a[4]);
break;
case SYS_SENDMSG:
err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
a[2], true);
break;
case SYS_SENDMMSG:
err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
a[3], true);
break;
case SYS_RECVMSG:
err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
a[2], true);
break;
case SYS_RECVMMSG:
if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
a[2], a[3],
(struct __kernel_timespec __user *)a[4],
NULL);
else
err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
a[2], a[3], NULL,
(struct old_timespec32 __user *)a[4]);
break;
case SYS_ACCEPT4:
err = __sys_accept4(a0, (struct sockaddr __user *)a1,
(int __user *)a[2], a[3]);
break;
default:
err = -EINVAL;
break;
}
return err;
}
可以看到发送send的入口函数是 __sys_sendto,recv函数的入口是 _ _sys_recvfrom()函数
截图入下:
1.1 send在传输层的函数调用流程
1.1.1 Bsd Socket层
1.1.1.1 __sys_sendto函数
sendto() 用来将数据由指定的socket 传给对方主机. 参数s 为已建好连线的socket, 如果利用UDP协议则不需经过连线操作. 参数msg 指向欲连线的数据内容, 参数flags 一般设0, 详细描述请参考send(). 参数to 用来指定欲传送的网络地址, 结构sockaddr 请参考bind(). 参数tolen 为sockaddr 的结果长度.
在第1952行,可以看到调用到sock_sendmsg函数
1.1.1.2 sock_sendmsg函数
可以看到其中直接调用了security_socket_sendmsg函数
security_socket_sendmsg()对数据的发送进行了一些安全性的措施
security_socket_sendmsg()定义如下
通过以上步骤,在kernel启动以后,实现了对kernel中的某些函数的hook。
如果有被hook的系统调用发生,则会触发selinux的安全检查。
实现安全检查的逻辑如下:
1)在每个task_struct对象中保留对struct cred对象的引用,struct cred *real_cred;
2)从real_cred对象中有个security引用(void*类型);
3)从security对象中提取需要安全上下文;
4)通过对比进程的安全上下文,和目标文件的安全上下文,决定deny/permissive当前的系统调用。
然后调用sock_sendmsg_nosec()函数来发送数据
sock_sendmsg_nosec()函数在/net/socket.c中
开始调用下一层的inet_sendmsg()函数
1.1.2 Inet_socket层
1.1.2.1 inet_sendmsg函数
inet_sendmsg在/net/ipv4/af_inet.c中
在进行必要的准备工作后,根据参数选择调用tcp_sendmsg,udp_sendmsg
1.1.2.2 tcp_sendmsg函数
tcp_sendmsg()在net/ipv4/tcp.c中
可以看出函数是先调用lock_sock()加锁,然后调用tcp_sendmsg_locked()函数进行发送,然后调用release_sock()函数进行解锁
// 申请SKB和缓存空间, 将用户空间数据复制到缓存空间中,然后发送出去
int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) {
// ......
// 这里取得超时时间, 非阻塞时timeo=0
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
// ......
// while循环直到用户空间的数据都复制到了内核空间
while (msg_data_left(msg)) {
// ......
// 假设需要发送的数据量很大,则一直往内核缓存塞用户空间的数据,直到:
if (!sk_page_frag_refill(sk, pfrag))
goto wait_for_memory; // 如果缓存不足,进入wait_for_memory
// ......
}
// ......
// 如果是非阻塞模式, 这里timeo为0, 即立刻返回用户态, 否则阻塞
wait_for_memory:
err = sk_stream_wait_memory(sk, &timeo);
// ......
}
而在tcp_sendmsg_locked()
tcp_sendmsg_locked()中,主要调用了tcp_push()函数
1.1.2.3 tcp_push函数
tcp_push调用了__tcp_push_pending_frames()函数
②tcp_write_xmit()函数把数据写到缓存里,即实现了拥塞控制,然后调用了tcp_transmit_skb传输数据
1.1.2.4 tcp_transmit_skb函数
tcp_transmit_skb的作用是复制或者拷贝skb,构造skb中的tcp首部,并将调用网络层的发送函数发送skb;在发送前,首先需要克隆或者复制skb,因为在成功发送到网络设备之后,skb会释放,而tcp层不能真正的释放,是需要等到对该数据段的ack才可以释放;然后构造tcp首部和选项;最后调用网络层提供的发送回调函数发送skb,ip层的回调函数为ip_queue_xmit;
tcp_transmit_skb()直接调用了__tcp_tranmit_skb()
1.1.3 调试验证√
1.2 recv在传输层的函数调用流程
1.2.1 Bsd socket层
1.2.1.1 __sys_recvfrom函数
__sys_recvfrom调用了sock_recvmsg来接收数据,整个函数实际调用的是sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);,同样,根据tcp_prot结构的初始化,调用的其实是tcp_rcvmsg .接受函数比发送函数要复杂得多,因为数据接收不仅仅只是接收,tcp的三次握手也是在接收函数实现的,所以收到数据后要判断当前的状态,是否正在建立连接等,根据发来的信息考虑状态是否要改变,在这里,我们仅仅考虑在连接建立后数据的接收
1.2.1.2 sock_recvmsg函数
再sock_recvmsg()函数调用了securty_socket_recvmsg()来进行安全检查,让sock_recvmsg_nosec()负责具体的接受工作。
1.2.2 Inet Socket层
1.2.2.1 inet_recvmsg
/net/ipv4/af_inet.c
在进行一系列准备工作吼,根据第838行的代码,因为本程序使用的TCP协议,所以选择tcp_recvmsg函数进行执行
1.2.2.2 tcp_recvmsg
/net/ipv4/tcp.c
tcp_recvmsg的函数体如下图
int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
int flags, int *addr_len)
{
struct tcp_sock *tp = tcp_sk(sk);
int copied = 0;
u32 peek_seq;
u32 *seq;
unsigned long used;
int err, inq;
int target; /* Read at least this many bytes */
long timeo;
struct sk_buff *skb, *last;
u32 urg_hole = 0;
struct scm_timestamping_internal tss;
int cmsg_flags;
if (unlikely(flags & MSG_ERRQUEUE))
return inet_recv_error(sk, msg, len, addr_len);
if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
(sk->sk_state == TCP_ESTABLISHED))
sk_busy_loop(sk, nonblock);
lock_sock(sk);
err = -ENOTCONN;
if (sk->sk_state == TCP_LISTEN)
goto out;
cmsg_flags = tp->recvmsg_inq ? 1 : 0;
timeo = sock_rcvtimeo(sk, nonblock);
/* Urgent data needs to be handled specially. */
if (flags & MSG_OOB)
goto recv_urg;
if (unlikely(tp->repair)) {
err = -EPERM;
if (!(flags & MSG_PEEK))
goto out;
if (tp->repair_queue == TCP_SEND_QUEUE)
goto recv_sndq;
err = -EINVAL;
if (tp->repair_queue == TCP_NO_QUEUE)
goto out;
/* ‘common‘ recv queue MSG_PEEK-ing */
}
seq = &tp->copied_seq;
if (flags & MSG_PEEK) {
peek_seq = tp->copied_seq;
seq = &peek_seq;
}
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
do {
u32 offset;
/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
if (tp->urg_data && tp->urg_seq == *seq) {
if (copied)
break;
if (signal_pending(current)) {
copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
break;
}
}
/* Next get a buffer. */
last = skb_peek_tail(&sk->sk_receive_queue);
skb_queue_walk(&sk->sk_receive_queue, skb) {
last = skb;
/* Now that we have two receive queues this
* shouldn‘t happen.
*/
if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
"TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
*seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
flags))
break;
offset = *seq - TCP_SKB_CB(skb)->seq;
if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
pr_err_once("%s: found a SYN, please report !\n", __func__);
offset--;
}
if (offset < skb->len)
goto found_ok_skb;
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
goto found_fin_ok;
WARN(!(flags & MSG_PEEK),
"TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
*seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
}
/* Well, if we have backlog, try to process it now yet. */
if (copied >= target && !sk->sk_backlog.tail)
break;
if (copied) {
if (sk->sk_err ||
sk->sk_state == TCP_CLOSE ||
(sk->sk_shutdown & RCV_SHUTDOWN) ||
!timeo ||
signal_pending(current))
break;
} else {
if (sock_flag(sk, SOCK_DONE))
break;
if (sk->sk_err) {
copied = sock_error(sk);
break;
}
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_state == TCP_CLOSE) {
/* This occurs when user tries to read
* from never connected socket.
*/
copied = -ENOTCONN;
break;
}
if (!timeo) {
copied = -EAGAIN;
break;
}
if (signal_pending(current)) {
copied = sock_intr_errno(timeo);
break;
}
}
tcp_cleanup_rbuf(sk, copied);
if (copied >= target) {
/* Do not sleep, just process backlog. */
release_sock(sk);
lock_sock(sk);
} else {
sk_wait_data(sk, &timeo, last);
}
if ((flags & MSG_PEEK) &&
(peek_seq - copied - urg_hole != tp->copied_seq)) {
net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
current->comm,
task_pid_nr(current));
peek_seq = tp->copied_seq;
}
continue;
found_ok_skb:
/* Ok so how much can we use? */
used = skb->len - offset;
if (len < used)
used = len;
/* Do we have urgent data here? */
if (tp->urg_data) {
u32 urg_offset = tp->urg_seq - *seq;
if (urg_offset < used) {
if (!urg_offset) {
if (!sock_flag(sk, SOCK_URGINLINE)) {
WRITE_ONCE(*seq, *seq + 1);
urg_hole++;
offset++;
used--;
if (!used)
goto skip_copy;
}
} else
used = urg_offset;
}
}
if (!(flags & MSG_TRUNC)) {
err = skb_copy_datagram_msg(skb, offset, msg, used);
if (err) {
/* Exception. Bailout! */
if (!copied)
copied = -EFAULT;
break;
}
}
WRITE_ONCE(*seq, *seq + used);
copied += used;
len -= used;
tcp_rcv_space_adjust(sk);
skip_copy:
if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
tp->urg_data = 0;
tcp_fast_path_check(sk);
}
if (used + offset < skb->len)
continue;
if (TCP_SKB_CB(skb)->has_rxtstamp) {
tcp_update_recv_tstamps(skb, &tss);
cmsg_flags |= 2;
}
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
goto found_fin_ok;
if (!(flags & MSG_PEEK))
sk_eat_skb(sk, skb);
continue;
found_fin_ok:
/* Process the FIN. */
WRITE_ONCE(*seq, *seq + 1);
if (!(flags & MSG_PEEK))
sk_eat_skb(sk, skb);
break;
} while (len > 0);
/* According to UNIX98, msg_name/msg_namelen are ignored
* on connected socket. I was just happy when found this 8) --ANK
*/
/* Clean up data we have read: This will do ACK frames. */
tcp_cleanup_rbuf(sk, copied);
release_sock(sk);
if (cmsg_flags) {
if (cmsg_flags & 2)
tcp_recv_timestamp(msg, sk, &tss);
if (cmsg_flags & 1) {
inq = tcp_inq_hint(sk);
put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
}
}
return copied;
out:
release_sock(sk);
return err;
recv_urg:
err = tcp_recv_urg(sk, msg, len, flags);
goto out;
recv_sndq:
err = tcp_peek_sndq(sk, msg, len);
goto out;
}
这里共维护了三个队列:prequeue、backlog、receive_queue,分别为预处理队列,后备队列和接收队列,在连接建立后,若没有数据到来,接收队列为空,进程会在sk_busy_loop函数内循环等待,知道接收队列不为空,并调用函数数skb_copy_datagram_msg将接收到的数据拷贝到用户态,实际调用的是__skb_datagram_iter,这里同样用了struct msghdr *msg来实现
int __skb_datagram_iter(const struct sk_buff *skb, int offset,
struct iov_iter *to, int len, bool fault_short,
size_t (*cb)(const void *, size_t, void *, struct iov_iter *),
void *data)
{
int start = skb_headlen(skb);
int i, copy = start - offset, start_off = offset, n;
struct sk_buff *frag_iter;
/* 拷贝tcp头部 */
if (copy > 0) {
if (copy > len)
copy = len;
n = cb(skb->data + offset, copy, data, to);
offset += n;
if (n != copy)
goto short_copy;
if ((len -= copy) == 0)
return 0;
}
/* 拷贝数据部分 */
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int end;
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
WARN_ON(start > offset + len);
end = start + skb_frag_size(frag);
if ((copy = end - offset) > 0) {
struct page *page = skb_frag_page(frag);
u8 *vaddr = kmap(page);
if (copy > len)
copy = len;
n = cb(vaddr + frag->page_offset +
offset - start, copy, data, to);
kunmap(page);
offset += n;
if (n != copy)
goto short_copy;
if (!(len -= copy))
return 0;
}
start = end;
}
1.2.2.3 tcp_v4_rcv函数
/net/tcp_ipv4.c
tcp_v4_rcv被ip_local_deliver函数调用,是从IP层协议向INET Socket层提交的"数据到"请求,入口参数skb存放接收到的数据,len是接收的数据的长度,这个函数首先移动skb->data指针,让它指向tcp头,然后更新tcp层的一些数据统计,然后进行tcp的一些值的校验.再从INET Socket层中已经建立的sock{}结构变量中查找正在等待当前到达数据的哪一项.可能这个sock{}结构已经建立,或者还处于监听端口、等待数据连接的状态。返回的sock结构指针存放在sk中。然后根据其他进程对sk的操作情况,将skb发送到合适的位置.调用如下:
TCP包接收器(tcp_v4_rcv)将TCP包投递到目的套接字进行接收处理. 当套接字正被用户锁定,TCP包将暂时排入该套接字的后备队列(sk_add_backlog).这时如果某一用户线程企图锁定该套接字(lock_sock),该线程被排入套接字的后备处理等待队列(sk->lock.wq).当用户释放上锁的套接字时(release_sock,在tcp_recvmsg中调用),后备队列中的TCP包被立即注入TCP包处理器(tcp_v4_do_rcv)进行处理,然后唤醒等待队列中最先的一个用户来获得其锁定权. 如果套接字未被上锁,当用户正在读取该套接字时, TCP包将被排入套接字的预备队列(tcp_prequeue),将其传递到该用户线程上下文中进行处理.如果添加到sk->prequeue不成功,便可以添加到 sk->receive_queue队列中(用户线程可以登记到预备队列,当预备队列中出现第一个包时就唤醒等待线程.)
tcp_v4_rcv详细的定义代码如下
int tcp_v4_rcv(struct sk_buff *skb)
{
struct net *net = dev_net(skb->dev);
struct sk_buff *skb_to_free;
int sdif = inet_sdif(skb);
const struct iphdr *iph;
const struct tcphdr *th;
bool refcounted;
struct sock *sk;
int ret;
if (skb->pkt_type != PACKET_HOST)
goto discard_it;
/* Count it even if it‘s bad */
__TCP_INC_STATS(net, TCP_MIB_INSEGS);
if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
goto discard_it;
th = (const struct tcphdr *)skb->data;
if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
goto bad_packet;
if (!pskb_may_pull(skb, th->doff * 4))
goto discard_it;
/* An explanation is required here, I think.
* Packet length and doff are validated by header prediction,
* provided case of th->doff==0 is eliminated.
* So, we defer the checks. */
if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
goto csum_error;
th = (const struct tcphdr *)skb->data;
iph = ip_hdr(skb);
lookup:
sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
th->dest, sdif, &refcounted);
if (!sk)
goto no_tcp_socket;
process:
if (sk->sk_state == TCP_TIME_WAIT)
goto do_time_wait;
if (sk->sk_state == TCP_NEW_SYN_RECV) {
struct request_sock *req = inet_reqsk(sk);
bool req_stolen = false;
struct sock *nsk;
sk = req->rsk_listener;
if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
sk_drops_add(sk, skb);
reqsk_put(req);
goto discard_it;
}
if (tcp_checksum_complete(skb)) {
reqsk_put(req);
goto csum_error;
}
if (unlikely(sk->sk_state != TCP_LISTEN)) {
inet_csk_reqsk_queue_drop_and_put(sk, req);
goto lookup;
}
/* We own a reference on the listener, increase it again
* as we might lose it too soon.
*/
sock_hold(sk);
refcounted = true;
nsk = NULL;
if (!tcp_filter(sk, skb)) {
th = (const struct tcphdr *)skb->data;
iph = ip_hdr(skb);
tcp_v4_fill_cb(skb, iph, th);
nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
}
if (!nsk) {
reqsk_put(req);
if (req_stolen) {
/* Another cpu got exclusive access to req
* and created a full blown socket.
* Try to feed this packet to this socket
* instead of discarding it.
*/
tcp_v4_restore_cb(skb);
sock_put(sk);
goto lookup;
}
goto discard_and_relse;
}
if (nsk == sk) {
reqsk_put(req);
tcp_v4_restore_cb(skb);
} else if (tcp_child_process(sk, nsk, skb)) {
tcp_v4_send_reset(nsk, skb);
goto discard_and_relse;
} else {
sock_put(sk);
return 0;
}
}
if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
goto discard_and_relse;
}
if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
goto discard_and_relse;
if (tcp_v4_inbound_md5_hash(sk, skb))
goto discard_and_relse;
nf_reset_ct(skb);
if (tcp_filter(sk, skb))
goto discard_and_relse;
th = (const struct tcphdr *)skb->data;
iph = ip_hdr(skb);
tcp_v4_fill_cb(skb, iph, th);
skb->dev = NULL;
if (sk->sk_state == TCP_LISTEN) {
ret = tcp_v4_do_rcv(sk, skb);
goto put_and_return;
}
sk_incoming_cpu_update(sk);
bh_lock_sock_nested(sk);
tcp_segs_in(tcp_sk(sk), skb);
ret = 0;
if (!sock_owned_by_user(sk)) {
skb_to_free = sk->sk_rx_skb_cache;
sk->sk_rx_skb_cache = NULL;
ret = tcp_v4_do_rcv(sk, skb);
} else {
if (tcp_add_backlog(sk, skb))
goto discard_and_relse;
skb_to_free = NULL;
}
bh_unlock_sock(sk);
if (skb_to_free)
__kfree_skb(skb_to_free);
put_and_return:
if (refcounted)
sock_put(sk);
return ret;
no_tcp_socket:
if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
goto discard_it;
tcp_v4_fill_cb(skb, iph, th);
if (tcp_checksum_complete(skb)) {
csum_error:
__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
bad_packet:
__TCP_INC_STATS(net, TCP_MIB_INERRS);
} else {
tcp_v4_send_reset(NULL, skb);
}
discard_it:
/* Discard frame. */
kfree_skb(skb);
return 0;
discard_and_relse:
sk_drops_add(sk, skb);
if (refcounted)
sock_put(sk);
goto discard_it;
do_time_wait:
if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
inet_twsk_put(inet_twsk(sk));
goto discard_it;
}
tcp_v4_fill_cb(skb, iph, th);
if (tcp_checksum_complete(skb)) {
inet_twsk_put(inet_twsk(sk));
goto csum_error;
}
switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
case TCP_TW_SYN: {
struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
&tcp_hashinfo, skb,
__tcp_hdrlen(th),
iph->saddr, th->source,
iph->daddr, th->dest,
inet_iif(skb),
sdif);
if (sk2) {
inet_twsk_deschedule_put(inet_twsk(sk));
sk = sk2;
tcp_v4_restore_cb(skb);
refcounted = false;
goto process;
}
}
/* to ACK */
/* fall through */
case TCP_TW_ACK:
tcp_v4_timewait_ack(sk, skb);
break;
case TCP_TW_RST:
tcp_v4_send_reset(sk, skb);
inet_twsk_deschedule_put(inet_twsk(sk));
goto discard_it;
case TCP_TW_SUCCESS:;
}
goto discard_it;
}
1.2.3 调试验证√
2.send和recv网络层流程
2.1 send在网络层的函数调用流程
2.1.1 ip_queue_xmit函数
ip_queue_xmit()在include/net/ip.h中
ip_queue_xmit函数直接调用__ip_queue_xmit()函数
__ip_queue_xmit()在net/ipv4/ip_output.c中
int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
__u8 tos)
{
struct inet_sock *inet = inet_sk(sk);
struct net *net = sock_net(sk);
struct ip_options_rcu *inet_opt;
struct flowi4 *fl4;
struct rtable *rt;
struct iphdr *iph;
int res;
/* Skip all of this if the packet is already routed,
* f.e. by something like SCTP.
*/
rcu_read_lock();
inet_opt = rcu_dereference(inet->inet_opt);
fl4 = &fl->u.ip4;
rt = skb_rtable(skb);
if (rt)
goto packet_routed;
/* Make sure we can route this packet. */
rt = (struct rtable *)__sk_dst_check(sk, 0);
if (!rt) {
__be32 daddr;
/* Use correct destination address if we have options. */
daddr = inet->inet_daddr;
if (inet_opt && inet_opt->opt.srr)
daddr = inet_opt->opt.faddr;
/* If this fails, retransmit mechanism of transport layer will
* keep trying until route appears or the connection times
* itself out.
*/
rt = ip_route_output_ports(net, fl4, sk,
daddr, inet->inet_saddr,
inet->inet_dport,
inet->inet_sport,
sk->sk_protocol,
RT_CONN_FLAGS_TOS(sk, tos),
sk->sk_bound_dev_if);
if (IS_ERR(rt))
goto no_route;
sk_setup_caps(sk, &rt->dst);
}
skb_dst_set_noref(skb, &rt->dst);
packet_routed:
if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
goto no_route;
/* OK, we know where to send it, allocate and build IP header. */
skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
skb_reset_network_header(skb);
iph = ip_hdr(skb);
*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
iph->frag_off = htons(IP_DF);
else
iph->frag_off = 0;
iph->ttl = ip_select_ttl(inet, &rt->dst);
iph->protocol = sk->sk_protocol;
ip_copy_addrs(iph, fl4);
/* Transport layer set skb->h.foo itself. */
if (inet_opt && inet_opt->opt.optlen) {
iph->ihl += inet_opt->opt.optlen >> 2;
ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
}
ip_select_ident_segs(net, skb, sk,
skb_shinfo(skb)->gso_segs ?: 1);
/* TODO : should we use skb->sk here instead of sk ? */
skb->priority = sk->sk_priority;
skb->mark = sk->sk_mark;
res = ip_local_out(net, sk, skb);
rcu_read_unlock();
return res;
no_route:
rcu_read_unlock();
IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
kfree_skb(skb);
return -EHOSTUNREACH;
}
上面函数功能可以总结为:
-
相关合法性检查;
-
防火墙过滤;
-
对数据包是否需要分片发送进行检查;
-
进行可能的数据包缓存处理;
-
对多播和广播数据报是否需要回送本机进行检查;
-
调用函数 ip_local_out() 进行处理。
上面函数内部涉及到一个函数,把数据包分片,当数据包大小大于最大传输单元时,需要将数据包分片传送,这里则是通过函数 ip_fragment 实现的。
2.1.2 ip_local_out函数
可以看出ip_local_out直接调用__ip_local_out函数
将要从本地发出的数据包,会在构造了ip头之后,调用ip_local_out函数,该函数设置数据包的总长度和校验和,然后经过netfilter的LOCAL_OUT钩子点进行检查过滤,如果通过,则调用dst_output函数,实际上调用的是ip数据包输出函数ip_output;
/include/net/dst.h
2.1.3 ip_output函数
/net/ipv4/ip_output.c
可以ip_output函数中执行了一个狗子程序,并调用了ip_finish_output()函数
2.1.4 ip_finish_output函数
net/ipv4/ip_output.c
从图中,可以看出,ip_finish_output()直接调用了__ip_finish_output()。而在ip_finish_output()中对skb进行分片判断,需要分片,则分片后输出,不需要分片则知直接输出;
2.1.5 ip_finish_output2函数
/net/ipv4/ip_output.c
对skb的头部空间进行检查,看是否能够容纳下二层头部,若空间不足,则需要重新申请skb;然后,获取邻居子系统,并通过邻居子系统输出;
在228行,调用neigh_otuput()邻居子系统进行输出
2.1.6 neigh_resolve_output函数
/include/net/neighbour.h
在第1487行,调用dev_queue_xmit()在数据链路层进行输出。
2.1.
2.2 调试验证√
2.3 recv在网络层的函数调用流程
ip层收包流程概述:
-
在inet_init中注册了类型为ETH_P_IP协议的数据包的回调ip_rcv
-
当二层数据包接收完毕,会调用netif_receive_skb根据协议进行向上层分发
-
类型为ETH_P_IP类型的数据包,被传递到三层,调用ip_rcv函数
-
ip_rcv完成基本的校验和处理工作后,经过PRE_ROUTING钩子点
-
经过PRE_ROUTING钩子点之后,调用ip_rcv_finish完成数据包接收,包括选项处理,路由查询,并且根据路由决定数据包是发往本机还是转
2.2.1 ip_rcv函数
ip_rcv函数体内的流程详细见下面代码注释
/*
* Main IP Receive routine.
*/
int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
{
const struct iphdr *iph;
struct net *net;
u32 len;
/* When the interface is in promisc. mode, drop all the crap
* that it receives, do not try to analyse it.
*/
/* 混杂模式下,非本机包 */
if (skb->pkt_type == PACKET_OTHERHOST)
goto drop;
/* 获取net */
net = dev_net(dev);
__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
/* 检查skb共享 */
skb = skb_share_check(skb, GFP_ATOMIC);
if (!skb) {
__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
goto out;
}
/* 测试是否可以取得ip头 */
if (!pskb_may_pull(skb, sizeof(struct iphdr)))
goto inhdr_error;
/* 取ip头 */
iph = ip_hdr(skb);
/*
* RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
*
* Is the datagram acceptable?
*
* 1. Length at least the size of an ip header
* 2. Version of 4
* 3. Checksums correctly. [Speed optimisation for later, skip loopback checksums]
* 4. Doesn‘t have a bogus length
*/
/* 头部长度不足20 或者版本不是4 */
if (iph->ihl < 5 || iph->version != 4)
goto inhdr_error;
BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
__IP_ADD_STATS(net,
IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
/* 测试实际应取的ip头 */
if (!pskb_may_pull(skb, iph->ihl*4))
goto inhdr_error;
/* 取ip头 */
iph = ip_hdr(skb);
/* 校验和错误 */
if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
goto csum_error;
/* 取总长度 */
len = ntohs(iph->tot_len);
/* skb长度比ip包总长度小 */
if (skb->len < len) {
__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
goto drop;
}
/* 比头部长度还小 */
else if (len < (iph->ihl*4))
goto inhdr_error;
/* Our transport medium may have padded the buffer out. Now we know it
* is IP we can trim to the true length of the frame.
* Note this now means skb->len holds ntohs(iph->tot_len).
*/
/* 设置总长度为ip包的长度 */
if (pskb_trim_rcsum(skb, len)) {
__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
goto drop;
}
/* 取得传输层头部 */
skb->transport_header = skb->network_header + iph->ihl*4;
/* Remove any debris in the socket control block */
/* 重置cb */
memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
/* 保存输入设备信息 */
IPCB(skb)->iif = skb->skb_iif;
/* Must drop socket now because of tproxy. */
skb_orphan(skb);
/* 经过PRE_ROUTING钩子点 */
return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
net, NULL, skb, dev, NULL,
ip_rcv_finish);
csum_error:
__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
inhdr_error:
__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
drop:
kfree_skb(skb);
out:
return NET_RX_DROP;
}
2.2.2 ip_rcv_finish函数
作用:
1)、确定数据包是转发还是在本机协议栈上传,如果是转发要确定输出网络设备和下一个接受栈的地址。
2)、解析和处理部分IP选项。
static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
{
const struct iphdr *iph = ip_hdr(skb);
struct rtable *rt;
struct net_device *dev = skb->dev;
void (*edemux)(struct sk_buff *skb);
/* if ingress device is enslaved to an L3 master device pass the
* skb to its handler for processing
*/
skb = l3mdev_ip_rcv(skb);
if (!skb)
return NET_RX_SUCCESS;
/*
启用了early_demux
skb路由缓存为空
skb的sock为空
不是分片包
*/
if (net->ipv4.sysctl_ip_early_demux &&
!skb_dst(skb) &&
!skb->sk &&
!ip_is_fragment(iph)) {
const struct net_protocol *ipprot;
/* 找到上层协议 */
int protocol = iph->protocol;
/* 获取协议对应的prot */
ipprot = rcu_dereference(inet_protos[protocol]);
/* 找到early_demux函数,如tcp_v4_early_demux */
if (ipprot && (edemux = READ_ONCE(ipprot->early_demux))) {
/* 调用该函数,将路由信息缓存到skb->refdst */
edemux(skb);
/* must reload iph, skb->head might have changed */
/* 重新取ip头 */
iph = ip_hdr(skb);
}
}
/*
* Initialise the virtual path cache for the packet. It describes
* how the packet travels inside Linux networking.
*/
/* 校验路由失败 */
if (!skb_valid_dst(skb)) {
/* 查路由 */
int err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
iph->tos, dev);
if (unlikely(err)) {
if (err == -EXDEV)
__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
goto drop;
}
}
#ifdef CONFIG_IP_ROUTE_CLASSID
if (unlikely(skb_dst(skb)->tclassid)) {
struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
u32 idx = skb_dst(skb)->tclassid;
st[idx&0xFF].o_packets++;
st[idx&0xFF].o_bytes += skb->len;
st[(idx>>16)&0xFF].i_packets++;
st[(idx>>16)&0xFF].i_bytes += skb->len;
}
#endif
/* 处理ip选项 */
if (iph->ihl > 5 && ip_rcv_options(skb))
goto drop;
/* 找到路由缓存项 */
rt = skb_rtable(skb);
if (rt->rt_type == RTN_MULTICAST) {
__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
} else if (rt->rt_type == RTN_BROADCAST) {
__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
} else if (skb->pkt_type == PACKET_BROADCAST ||
skb->pkt_type == PACKET_MULTICAST) {
struct in_device *in_dev = __in_dev_get_rcu(dev);
/* RFC 1122 3.3.6:
*
* When a host sends a datagram to a link-layer broadcast
* address, the IP destination address MUST be a legal IP
* broadcast or IP multicast address.
*
* A host SHOULD silently discard a datagram that is received
* via a link-layer broadcast (see Section 2.4) but does not
* specify an IP multicast or broadcast destination address.
*
* This doesn‘t explicitly say L2 *broadcast*, but broadcast is
* in a way a form of multicast and the most common use case for
* this is 802.11 protecting against cross-station spoofing (the
* so-called "hole-196" attack) so do it for both.
*/
if (in_dev &&
IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
goto drop;
}
/* 调用路由项的input函数,可能为ip_local_deliver或者ip_forward */
return dst_input(skb);
drop:
kfree_skb(skb);
return NET_RX_DROP;
}
2.2.3 ip_local_deliver函数
net/ipv4/ip_input.c
在ip_local_deliver()中,如果发现数据报有被分片,则进行组装。然后调用NF_INET_LOCAL_IN处的钩子函数,如果数据包被钩子函数放行,则调用ip_local_deliver_finish()继续处理。
2.2.4 ip_local_deliver_finish函数
ip_local_deliver_finish()主要做了:
- 处理RAW IP,如果有配置安全策略,则进行IPsec安全检查。
- 根据IP报头的protocol字段,找到对应的L4协议(net_protocol),调用该协议的接收函数net_protocol->handler()。
- 对于TCP协议,net_protocol实例为tcp_protocol,协议处理函数为tcp_v4_rcv()。
接下来就进入四层协议的处理流程了,TCP协议的入口函数为tcp_v4_rcv()。
static int ip_local_deliver_finish(struct sk_buff *skb)
{
struct net *net = dev_net(skb->dev);
/* 把skb->data指向L4协议头,更新skb->len */
__skb_pull(skb, ip_hdrlen(skb));
/* 赋值skb->transport_header */
skb_reset_transport_header(skb);
rcu_read_lock();
{
int protocol = ip_hdr(skb)->protocol; /* L4协议号 */
int hash, raw;
const struct net_protocol *ipprot;
resubmit:
/* 处理RAW IP */
raw = raw_local_deliver(skb, protocol);
hash = protocol & (MAX_INET_PROTOS - 1); /* 作为数组索引 */
/* 从inet_protos数组中取出对应的net_protocol元素,TCP的为tcp_protocol */
ipprot = rcu_dereference(inet_protos[hash]);
if (ipprot != NULL) {
int ret;
if (! net_eq(net, &init_net) && ! ipprot->netns_ok) {
if (net_ratelimit())
printk("%s: proto %d isn‘t netns-ready\n", __func__, protocol);
kfree_skb(skb);
goto out;
}
/* 如果需要检查IPsec安全策略 */
if (! ipprot->no_policy) {
if (! xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
kfree_skb(skb);
goto out;
}
nf_reset(skb);
}
/* 调用L4协议的处理函数,对于TCP,调用tcp_protocol->handler,为tcp_v4_rcv() */
ret = ipprot->handler(skb);
if (ret < 0) {
protocol = - ret;
goto resubmit;
}
IP_INC_STATS_BH(net, IPSTATS_MIB_INDELIVERS);
} else {
if (! raw) {
if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
IP_INC_STATS_BH(net, IPSTATS_MIB_INUNKNOWNPROTOS);
icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PROT_UNREACH, 0);
} else
IP_INC_STATS_BH(net, IPSTATS_MIB_INDELIVERS);
kfree_skb(skb);
}
}
out:
rcu_read_unlock();
return 0;
}
2.4 调试验证√
3.send和recv链路层和物理层流程
3.1 send在数据链路层和物理层的函数调用流程
3.1.1 dev_queue_xmit函数
/net/core/dev.c
可以看出,dev_queue_xmit直接调用__dev_queue_xmit()函数
下面是__dev_queue_xmit()函数的函数体
将缓冲区排队以传输到网络设备。发送者必须在调用之前已经设置了设备和优先级并建立了缓冲区
此功能。可以从中断中调用该函数。失败时返回否定的errno代码。成功不会保证帧将被发送,因为它可能由于丢失导致交通拥堵或流量整形。
static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
{
struct net_device *dev = skb->dev;
struct netdev_queue *txq;
struct Qdisc *q;
int rc = -ENOMEM;
bool again = false;
skb_reset_mac_header(skb);
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
/* Disable soft irqs for various locks below. Also
* stops preemption for RCU.
*/
rcu_read_lock_bh();
skb_update_prio(skb);
qdisc_pkt_len_init(skb);
#ifdef CONFIG_NET_CLS_ACT
skb->tc_at_ingress = 0;
# ifdef CONFIG_NET_EGRESS
if (static_branch_unlikely(&egress_needed_key)) {
skb = sch_handle_egress(skb, &rc, dev);
if (!skb)
goto out;
}
# endif
#endif
/* If device/qdisc don‘t need skb->dst, release it right now while
* its hot in this cpu cache.
*/
if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
skb_dst_drop(skb);
else
skb_dst_force(skb);
txq = netdev_core_pick_tx(dev, skb, sb_dev);
q = rcu_dereference_bh(txq->qdisc);
trace_net_dev_queue(skb);
if (q->enqueue) {
rc = __dev_xmit_skb(skb, q, dev, txq);
goto out;
}
/* The device has no queue. Common case for software devices:
* loopback, all the sorts of tunnels...
* Really, it is unlikely that netif_tx_lock protection is necessary
* here. (f.e. loopback and IP tunnels are clean ignoring statistics
* counters.)
* However, it is possible, that they rely on protection
* made by us here.
* Check this and shot the lock. It is not prone from deadlocks.
*Either shot noqueue qdisc, it is even simpler 8)
*/
if (dev->flags & IFF_UP) {
int cpu = smp_processor_id(); /* ok because BHs are off */
if (txq->xmit_lock_owner != cpu) {
if (dev_xmit_recursion())
goto recursion_alert;
skb = validate_xmit_skb(skb, dev, &again);
if (!skb)
goto out;
HARD_TX_LOCK(dev, txq, cpu);
if (!netif_xmit_stopped(txq)) {
dev_xmit_recursion_inc();
skb = dev_hard_start_xmit(skb, dev, txq, &rc);
dev_xmit_recursion_dec();
if (dev_xmit_complete(rc)) {
HARD_TX_UNLOCK(dev, txq);
goto out;
}
}
HARD_TX_UNLOCK(dev, txq);
net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
dev->name);
} else {
/* Recursion is detected! It is possible,
* unfortunately
*/
recursion_alert:
net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
dev->name);
}
}
rc = -ENETDOWN;
rcu_read_unlock_bh();
atomic_long_inc(&dev->tx_dropped);
kfree_skb_list(skb);
return rc;
out:
rcu_read_unlock_bh();
return rc;
}
从对_dev_queue_xmit函数的分析来看,发送报文有2中情况:
1.有拥塞控制策略的情况,比较复杂,但是目前最常用
2.没有enqueue的状况,比较简单,直接发送到driver,如loopback等使用
? 先检查是否有enqueue的规则,如果有即调用__dev_xmit_skb进入拥塞控制的flow,如果没有且txq处于On的状态,那么就调用dev_hard_start_xmit直接发送到driver,好 那先分析带Qdisc策略的flow 进入__dev_xmit_skb
3.1.2 dev_xmit_skb函数
static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
struct net_device *dev,
struct netdev_queue *txq)
{
spinlock_t *root_lock = qdisc_lock(q);
struct sk_buff *to_free = NULL;
bool contended;
int rc;
qdisc_calculate_pkt_len(skb, q);
if (q->flags & TCQ_F_NOLOCK) {
rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
qdisc_run(q);
if (unlikely(to_free))
kfree_skb_list(to_free);
return rc;
}
/*
* Heuristic to force contended enqueues to serialize on a
* separate lock before trying to get qdisc main lock.
* This permits qdisc->running owner to get the lock more
* often and dequeue packets faster.
*/
contended = qdisc_is_running(q);
if (unlikely(contended))
spin_lock(&q->busylock);
spin_lock(root_lock);
if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
__qdisc_drop(skb, &to_free);
rc = NET_XMIT_DROP;
} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
qdisc_run_begin(q)) {
/*
* This is a work-conserving queue; there are no old skbs
* waiting to be sent out; and the qdisc is not running -
* xmit the skb directly.
*/
qdisc_bstats_update(q, skb);
if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
if (unlikely(contended)) {
spin_unlock(&q->busylock);
contended = false;
}
__qdisc_run(q);
}
qdisc_run_end(q);
rc = NET_XMIT_SUCCESS;
} else {
rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
if (qdisc_run_begin(q)) {
if (unlikely(contended)) {
spin_unlock(&q->busylock);
contended = false;
}
__qdisc_run(q);
qdisc_run_end(q);
}
}
spin_unlock(root_lock);
if (unlikely(to_free))
kfree_skb_list(to_free);
if (unlikely(contended))
spin_unlock(&q->busylock);
return rc;
}
从上述分析来看,可以分成2个状况:
- Qdisc满足上述3个条件,置位TCQ_F_CAN_BYPASS,0个包,没有running直接调用sch_direct_xmit,感觉这种状况,是一开始刚发第一个包的时候肯定是这种状况...
- 不满足上述的3个条件 一个或者多个,那就直接进行enqueue操作,然后运行qdisc
个人认为,第一种状况是在网络通畅的状况下遇到的状况,qdisc的队列基本上处于空的状态,都是直接传送给driver了,第二种情况是属于出现网络拥塞的情况,出现发送失败的状况了
Q里面还有一些待发送的数据包,为了保证Q中的数据按照Qdisc的规则发送,比如先进先出,就需要enqueue操作,然后再去dequeue发送出去!
3.1.3 sch_dirct_xmit函数
下面来分析sch_direct_xmit,这个函数可能传输几个数据包,因为在不经过queue状况下和经过queue的状况下都会调通过这个函数发送,如果是queue状况,肯定是能够传输多个数据包了,本文后面也有分析,并按照需求处理return的状态,需要拿着__QDISC___STATE_RUNNING bit,只有一个CPU 可以执行这个函数, 在这里有可能会出现BUSY的状况!
int sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
struct net_device *dev, struct netdev_queue *txq,
spinlock_t *root_lock, bool validate)
{
int ret = NETDEV_TX_BUSY;
/* And release qdisc */
spin_unlock(root_lock);
/* Note that we validate skb (GSO, checksum, ...) outside of locks */
if (validate)
skb = validate_xmit_skb_list(skb, dev);
if (likely(skb)) {
HARD_TX_LOCK(dev, txq, smp_processor_id());
/*如果说txq被stop,即置位QUEUE_STATE_ANY_XOFF_OR_FROZEN,就直接ret = NETDEV_TX_BUSY
*如果说txq 正常运行,那么直接调用dev_hard_start_xmit发送数据包*/
if (!netif_xmit_frozen_or_stopped(txq))
skb = dev_hard_start_xmit(skb, dev, txq, &ret);
HARD_TX_UNLOCK(dev, txq);
} else {
spin_lock(root_lock);
return qdisc_qlen(q);
}
spin_lock(root_lock);
/*进行返回值处理! 如果ret < NET_XMIT_MASK 为true 否则 flase*/
if (dev_xmit_complete(ret)) {
/* Driver sent out skb successfully or skb was consumed */
/*这个地方需要注意可能有driver的负数的case,也意味着这个skb被drop了*/
ret = qdisc_qlen(q);
} else if (ret == NETDEV_TX_LOCKED) {
/* Driver try lock failed */
ret = handle_dev_cpu_collision(skb, txq, q);
} else {
/* Driver returned NETDEV_TX_BUSY - requeue skb */
if (unlikely(ret != NETDEV_TX_BUSY))
net_warn_ratelimited("BUG %s code %d qlen %d\n",
dev->name, ret, q->q.qlen);
/*发生Tx Busy的时候,重新进行requeue*/
ret = dev_requeue_skb(skb, q);
}
/*如果txq stop并且ret !=0 说明已经无法发送数据包了ret = 0*/
if (ret && netif_xmit_frozen_or_stopped(txq))
ret = 0;
return ret;
}
3.1.4 dev_hard_start_xmit函数
继续看dev_hard_start_xmit,这个函数比较简单,调用xmit_one来发送一个到多个数据包了
3.1.5 xmit_one函数
主要是在3200行调用了netdev_start_xmit
3.1.6 netdev_start_xmit函数
netdev_start_xmit,__netdev_start_xmit 再加上xmit_one()这个三个函数,其目的就是将封包送到driver的tx函数了.. 中间在送往driver之前,还会经历抓包的过程,本文不介绍抓包的流程了。
static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
struct netdev_queue *txq, bool more)
{
const struct net_device_ops *ops = dev->netdev_ops;
int rc;
/*__netdev_start_xmit 里面就完全是使用driver 的ops去发包了,其实到此为止,一个skb已经从netdevice
*这个层面送到driver层了,接下来会等待driver的返回*/
rc = __netdev_start_xmit(ops, skb, dev, more);
/*如果返回NETDEV_TX_OK,那么会更新下Txq的trans时间戳哦,txq->trans_start = jiffies;*/
if (rc == NETDEV_TX_OK)
txq_trans_update(txq);
return rc;
}
static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
struct sk_buff *skb, struct net_device *dev,
bool more)
{
skb->xmit_more = more ? 1 : 0;
return ops->ndo_start_xmit(skb, dev);
}
3.2 调试验证√
3.3 recv在数据链路层和物理层的函数调用流程
3.2.1 netif_rx函数
/net/core/dev.c, line 4434
netif_rx()是内核接收网络数据包的入口。
netif_rx()主要调用enqueue_to_backlog()进行后续处理。
netif_rx函数主要调用了netif_rx_internal函数,netif_rx_internal函数定义如下
netif_rx_internal主要调用enqueue_to_backlog()进行后续处理。
3.2.2 enqueue_to_backlog函数
netif_rx()调用enqueue_to_backlog()来处理。
首先获取当前cpu的softnet_data实例sd,然后:
-
如果接收队列sd->input_pkt_queue不为空,说明已经有软中断在处理数据包了,
则不需要再次触发软中断,直接将数据包添加到接收队列尾部即可。
-
如果接收队列sd->input_pkt_queue为空,说明当前没有软中断在处理数据包,
则把虚拟设备backlog添加到sd->poll_list中以便进行轮询,最后设置NET_RX_SOFTIRQ
标志触发软中断。
-
如果接收队列sd->input_pkt_queue满了,则直接丢弃数据包