TensorFlow2 手把手教你训练 MNIST 数据集

TensorFlow2 手把手教你训练 MNIST 数据集

概述

MNIST 包含 0~9 的手写数字, 共有 60000 个训练集和 10000 个测试集. 数据的格式为单通道 28*28 的灰度图.

TensorFlow2 手把手教你训练 MNIST 数据集

get_data 函数

TensorFlow2 手把手教你训练 MNIST 数据集

def get_data():
    """
    读取数据
    :return: 返回分批完的训练集和测试集
    """

    # 读取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()

    # 调试输出
    print("X_train:", X_train.shape, "y_train:", y_train.shape)
    print("X_test:", X_test.shape, "y_test:", y_test.shape)

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(60000, seed=0)
    train_db = train_db.batch(batch_size).map(pre_processing).repeat(iteration_num)  # 迭代45次

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0)
    test_db = test_db.batch(batch_size).map(pre_processing)

    return train_db, test_db

pre_processing 函数

def pre_processing(x, y):
    '''
    数据预处理
    :param x: 特征值
    :param y: 目标值
    :return: 返回预处理好的x, y
    '''

    # 转换x
    x = tf.cast(x, tf.float32) / 255  # 转换为0~1的形式
    x = tf.reshape(x, [-1, 784])  # 把x铺平

    # 转换y
    # y = tf.convert_to_tensor(y)  # 转成tensor
    y = tf.cast(y, tf.int32)  # 转成tensor
    y = tf.one_hot(y, depth=10)  # 转成one_hot编码

    return x, y

main 函数

def main():
    """
    主函数
    :return: 无返回值
    """

    # 获取分批数据
    train_db, test_db = get_data()

    # 生成w1形状为[784, 512]的截断正态分布, 中心为0, 标差为0.1
    w1 = tf.Variable(tf.random.truncated_normal([784, 512], stddev=0.1))

    # 生成b1形状为[512]初始化为0
    b1 = tf.Variable(tf.zeros([512]))

    # 生成w2形状为[512, 256]的截断正态分布, 中心为0, 标差为0.1
    w2 = tf.Variable(tf.random.truncated_normal([512, 256], stddev=0.1))

    # 生成b2形状为[256]初始化为0
    b2 = tf.Variable(tf.zeros([256]))

    # 生成w3形状为[256, 10]的截断正态分布, 中心为0, 标差为0.1
    w3 = tf.Variable(tf.random.truncated_normal([256, 10], stddev=0.1))

    # 生成b3形状为[10]初始化为0
    b3 = tf.Variable(tf.zeros([10]))

    for step, (x, y) in enumerate(train_db):

        with tf.GradientTape() as tape:
            # 第一个隐层
            h1 = x @ w1 + b1
            h1 = tf.nn.relu(h1)  # 激活

            # 第二个隐层
            h2 = h1 @ w2 + b2
            h2 = tf.nn.relu(h2)  # 激活

            # 输出层
            out = h2 @ w3 + b3

            # 计算损失函数
            loss = tf.square(y - out)
            loss = tf.reduce_mean(loss)

        grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])

        for p, g in zip([w1, b1, w2, b2, w3, b3], grads):
            p.assign_sub(learning_rate * g)

        # 每100批调试输出一下损失
        if step % 1000 == 0:
            print(step, 'loss:', float(loss))

        # 每1000次计算测试集正确率
        if step % 5000 == 0:
            total, total_correct = 0., 0

            for step, (x, y) in enumerate(test_db):
                # 第一个隐层
                h1 = x @ w1 + b1
                h1 = tf.nn.relu(h1)  # 激活

                # 第二个隐层
                h2 = h1 @ w2 + b2
                h2 = tf.nn.relu(h2)  # 激活

                # 输出层
                out = h2 @ w3 + b3

                # [256, 10] => [256]
                pred = tf.argmax(out, axis=1)

                # 从one_hot编码变回来
                y = tf.argmax(y, axis=1)

                # 判断是否正确
                correct = tf.equal(pred, y)

                # bool tensor => int tensor => numpy
                total_correct += tf.reduce_sum(tf.cast(correct, dtype=tf.int32)).numpy()
                total += x.shape[0]

            print(step, "Accuracy", total_correct / total * 100, "%")

完整代码

import tensorflow as tf

# 定义超参数
batch_size = 256  # 一次训练的样本数目
learning_rate = 0.001  # 学习率
iteration_num = 45  # 迭代次数


def get_data():
    """
    读取数据
    :return: 返回分批完的训练集和测试集
    """

    # 读取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()

    # 调试输出
    print("X_train:", X_train.shape, "y_train:", y_train.shape)
    print("X_test:", X_test.shape, "y_test:", y_test.shape)

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(60000, seed=0)
    train_db = train_db.batch(batch_size).map(pre_processing).repeat(iteration_num)  # 迭代45次

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0)
    test_db = test_db.batch(batch_size).map(pre_processing)

    return train_db, test_db


def pre_processing(x, y):
    '''
    数据预处理
    :param x: 特征值
    :param y: 目标值
    :return: 返回预处理好的x, y
    '''

    # 转换x
    x = tf.cast(x, tf.float32) / 255  # 转换为0~1的形式
    x = tf.reshape(x, [-1, 784])  # 把x铺平

    # 转换y
    # y = tf.convert_to_tensor(y)  # 转成tensor
    y = tf.cast(y, tf.int32)  # 转成tensor
    y = tf.one_hot(y, depth=10)  # 转成one_hot编码

    return x, y


def main():
    """
    主函数
    :return: 无返回值
    """

    # 获取分批数据
    train_db, test_db = get_data()

    # 生成w1形状为[784, 512]的截断正态分布, 中心为0, 标差为0.1
    w1 = tf.Variable(tf.random.truncated_normal([784, 512], stddev=0.1))

    # 生成b1形状为[512]初始化为0
    b1 = tf.Variable(tf.zeros([512]))

    # 生成w2形状为[512, 256]的截断正态分布, 中心为0, 标差为0.1
    w2 = tf.Variable(tf.random.truncated_normal([512, 256], stddev=0.1))

    # 生成b2形状为[256]初始化为0
    b2 = tf.Variable(tf.zeros([256]))

    # 生成w3形状为[256, 10]的截断正态分布, 中心为0, 标差为0.1
    w3 = tf.Variable(tf.random.truncated_normal([256, 10], stddev=0.1))

    # 生成b3形状为[10]初始化为0
    b3 = tf.Variable(tf.zeros([10]))

    for step, (x, y) in enumerate(train_db):

        with tf.GradientTape() as tape:
            # 第一个隐层
            h1 = x @ w1 + b1
            h1 = tf.nn.relu(h1)  # 激活

            # 第二个隐层
            h2 = h1 @ w2 + b2
            h2 = tf.nn.relu(h2)  # 激活

            # 输出层
            out = h2 @ w3 + b3

            # 计算损失函数
            loss = tf.square(y - out)
            loss = tf.reduce_mean(loss)
		
		# 计算梯度
        grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
		
		# 更新权重
        for p, g in zip([w1, b1, w2, b2, w3, b3], grads):
            p.assign_sub(learning_rate * g)

        # 每100批调试输出一下损失
        if step % 1000 == 0:
            print(step, 'loss:', float(loss))

        # 每1000次计算测试集正确率
        if step % 5000 == 0:
            total, total_correct = 0., 0

            for step, (x, y) in enumerate(test_db):
                # 第一个隐层
                h1 = x @ w1 + b1
                h1 = tf.nn.relu(h1)  # 激活

                # 第二个隐层
                h2 = h1 @ w2 + b2
                h2 = tf.nn.relu(h2)  # 激活

                # 输出层
                out = h2 @ w3 + b3

                # [256, 10] => [256]
                pred = tf.argmax(out, axis=1)

                # 从one_hot编码变回来
                y = tf.argmax(y, axis=1)

                # 判断是否正确
                correct = tf.equal(pred, y)

                # bool tensor => int tensor => numpy
                total_correct += tf.reduce_sum(tf.cast(correct, dtype=tf.int32)).numpy()
                total += x.shape[0]

            print(step, "Accuracy", total_correct / total * 100, "%")


if __name__ == "__main__":
    main()

输出结果:

X_train: (60000, 28, 28) y_train: (60000,)
X_test: (10000, 28, 28) y_test: (10000,)
0 loss: 1.8554267883300781
39 Accuracy 12.479999999999999 %
1000 loss: 0.21533580124378204
2000 loss: 0.1755288988351822
3000 loss: 0.13523665070533752
4000 loss: 0.12891730666160583
5000 loss: 0.11436235904693604
39 Accuracy 55.95 %
6000 loss: 0.10332286357879639
7000 loss: 0.09788000583648682
8000 loss: 0.09040157496929169
9000 loss: 0.07946525514125824
10000 loss: 0.08393758535385132
39 Accuracy 68.33 %
上一篇:Tensorflow2(用tf2的别再看老教程了 !) win10 物体检测API的安装、使用、训练自己的数据集


下一篇:利用Tensorflow2构建CNN并用于图像分类