https://my.oschina.net/fdhay/blog/638631
高性能网络 | 你所不知道的TIME_WAIT和CLOSE_WAIT
2016-02-18 大房 大房说
本文是我将最近两篇文章,重新整理成一篇,方便收藏。如果你已经阅读过前两篇,并且已经做了收藏,可以重新收藏本文即可。
你有收藏和整理文章的习惯吗?好好利用Evernote或者印象笔记,不要吝啬那点年费,你值得购买,并养成收藏和整理的习惯!
本文源于大家在公众号里面的留言,既然很多人都搞不清楚TIME_WAIT和CLOSE_WAIT,那么小胖哥今天还是抽个时间,统一帮大家理理概念吧。
你遇到过TIME_WAIT的问题吗?
我相信很多都遇到过这个问题。一旦有用户在喊:网络变慢了。第一件事情就是,netstat -a | grep TIME_WAIT | wc -l 一下。哎呀妈呀,几千个TIME_WAIT.
然后,做的第一件事情就是:打开Google或者Bing,输入关键词:too many time wait。一定能找到解决方案,而排在最前面或者被很多人到处转载的解决方案一定是:
打开 sysctl.conf 文件,修改以下几个参数:
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_timestamps = 1
你也会被告知,开启tw_recylce和tw_reuse一定需要timestamps的支持,而且这些配置一般不建议开启,但是对解决TIME_WAIT很多的问题,有很好的用处。
接下来,你就直接修改了这几个参数,reload一下,发现,咦,没几分钟,TIME_WAIT的数量真的降低了,也没发现哪个用户说有问题,然后就没有然后了。
做到这一步,相信50%或者更高比例的开发就已经止步了。问题好像解决了,但是,要彻底理解并解决这个问题,可能就没这么简单,或者说,还有很长的路要走!
什么是TIME-WAIT和CLOSE-WAIT?
所谓,要解决问题,就要先理解问题。随便改两行代码,发现bug“没有了”,也不是bug真的没有了,只是隐藏在更深的地方,你没有发现,或者以你的知识水平,你无法发现而已。
大家知道,由于socket是全双工的工作模式,一个socket的关闭,是需要四次握手来完成的。
-
主动关闭连接的一方,调用close();协议层发送FIN包
-
被动关闭的一方收到FIN包后,协议层回复ACK;然后被动关闭的一方,进入CLOSE_WAIT状态,主动关闭的一方等待对方关闭,则进入FIN_WAIT_2状态;此时,主动关闭的一方 等待 被动关闭一方的应用程序,调用close操作
-
被动关闭的一方在完成所有数据发送后,调用close()操作;此时,协议层发送FIN包给主动关闭的一方,等待对方的ACK,被动关闭的一方进入LAST_ACK状态;
-
主动关闭的一方收到FIN包,协议层回复ACK;此时,主动关闭连接的一方,进入TIME_WAIT状态;而被动关闭的一方,进入CLOSED状态
-
等待2MSL时间,主动关闭的一方,结束TIME_WAIT,进入CLOSED状态
通过上面的一次socket关闭操作,你可以得出以下几点:
-
主动关闭连接的一方 - 也就是主动调用socket的close操作的一方,最终会进入TIME_WAIT状态
-
被动关闭连接的一方,有一个中间状态,即CLOSE_WAIT,因为协议层在等待上层的应用程序,主动调用close操作后才主动关闭这条连接
-
TIME_WAIT会默认等待2MSL时间后,才最终进入CLOSED状态;
-
在一个连接没有进入CLOSED状态之前,这个连接是不能被重用的!
所以,这里凭你的直觉,TIME_WAIT并不可怕(not really,后面讲),CLOSE_WAIT才可怕,因为CLOSE_WAIT很多,表示说要么是你的应用程序写的有问题,没有合适的关闭socket;要么是说,你的服务器CPU处理不过来(CPU太忙)或者你的应用程序一直睡眠到其它地方(锁,或者文件I/O等等),你的应用程序获得不到合适的调度时间,造成你的程序没法真正的执行close操作。
这里又出现两个问题:
-
上文提到的连接重用,那连接到底是个什么概念?
-
协议层为什么要设计一个TIME_WAIT状态?这个状态为什么默认等待2MSL时间才会进入CLOSED
先解释清楚这两个问题,我们再来看,开头提到的几个网络配置究竟有什么用,以及TIME_WAIT的后遗症问题。
Socket连接到底是个什么概念?
大家经常提socket,那么,到底什么是一个socket?其实,socket就是一个 五元组,包括:
-
源IP
-
源端口
-
目的IP
-
目的端口
-
类型:TCP or UDP
这个五元组,即标识了一条可用的连接。注意,有很多人把一个socket定义成四元组,也就是 源IP:源端口 + 目的IP:目的端口,这个定义是不正确的。
例如,如果你的本地出口IP是180.172.35.150,那么你的浏览器在连接某一个Web服务器,例如百度的时候,这条socket连接的四元组可能就是:
[180.172.35.150:45678, tcp, 180.97.33.108:80]
源IP为你的出口IP地址 180.172.35.150,源端口为随机端口 45678,目的IP为百度的某一个负载均衡服务器IP 180.97.33.108,端口为HTTP标准的80端口。
如果这个时候,你再开一个浏览器,访问百度,将会产生一条新的连接:
[180.172.35.150:43678, tcp, 180.97.33.108:80]
这条新的连接的源端口为一个新的随机端口 43678。
如此来看,如果你的本机需要压测百度,那么,你最多可以创建多少个连接呢?我在文章《云思路 | 轻松构建千万级投票系统》里也稍微提过这个问题,没有阅读过本文的,可以发送“投票系统”阅读。
第二个问题,TIME_WAIT有什么用?
如果我们来做个类比的话,TIME_WAIT的出现,对应的是你的程序里的异常处理,它的出现,就是为了解决网络的丢包和网络不稳定所带来的其他问题:
第一,防止前一个连接【五元组,我们继续以 180.172.35.150:45678, tcp, 180.97.33.108:80 为例】上延迟的数据包或者丢失重传的数据包,被后面复用的连接【前一个连接关闭后,此时你再次访问百度,新的连接可能还是由180.172.35.150:45678, tcp, 180.97.33.108:80 这个五元组来表示,也就是源端口凑巧还是45678】错误的接收(异常:数据丢了,或者传输太慢了),参见下图:
-
SEQ=3的数据包丢失,重传第一次,没有得到ACK确认
-
如果没有TIME_WAIT,或者TIME_WAIT时间非常端,那么关闭的连接【180.172.35.150:45678, tcp, 180.97.33.108:80 的状态变为了CLOSED,源端口可被再次利用】,马上被重用【对180.97.33.108:80新建的连接,复用了之前的随机端口45678】,并连续发送SEQ=1,2 的数据包
-
此时,前面的连接上的SEQ=3的数据包再次重传,同时,seq的序号刚好也是3(这个很重要,不然,SEQ的序号对不上,就会RST掉),此时,前面一个连接上的数据被后面的一个连接错误的接收
第二,确保连接方能在时间范围内,关闭自己的连接。其实,也是因为丢包造成的,参见下图:
-
主动关闭方关闭了连接,发送了FIN;
-
被动关闭方回复ACK同时也执行关闭动作,发送FIN包;此时,被动关闭的一方进入LAST_ACK状态
-
主动关闭的一方回去了ACK,主动关闭一方进入TIME_WAIT状态;
-
但是最后的ACK丢失,被动关闭的一方还继续停留在LAST_ACK状态
-
此时,如果没有TIME_WAIT的存在,或者说,停留在TIME_WAIT上的时间很短,则主动关闭的一方很快就进入了CLOSED状态,也即是说,如果此时新建一个连接,源随机端口如果被复用,在connect发送SYN包后,由于被动方仍认为这条连接【五元组】还在等待ACK,但是却收到了SYN,则被动方会回复RST
-
造成主动创建连接的一方,由于收到了RST,则连接无法成功
所以,你看到了,TIME_WAIT的存在是很重要的,如果强制忽略TIME_WAIT,还是有很高的机率,造成数据粗乱,或者短暂性的连接失败。
那么,为什么说,TIME_WAIT状态会是持续2MSL(2倍的max segment lifetime)呢?这个时间可以通过修改内核参数调整吗?第一,这个2MSL,是RFC 793里定义的,参见RFC的截图标红的部分:
这个定义,更多的是一种保障(IP数据包里的TTL,即数据最多存活的跳数,真正反应的才是数据在网络上的存活时间),确保最后丢失了ACK,被动关闭的一方再次重发FIN并等待回复的ACK,一来一去两个来回。内核里,写死了这个MSL的时间为:30秒(有读者提醒,RFC里建议的MSL其实是2分钟,但是很多实现都是30秒),所以TIME_WAIT的即为1分钟:
所以,再次回想一下前面的问题,如果一条连接,即使在四次握手关闭了,由于TIME_WAIT的存在,这个连接,在1分钟之内,也无法再次被复用,那么,如果你用一台机器做压测的客户端,你一分钟能发送多少并发连接请求?如果这台是一个负载均衡服务器,一台负载均衡服务器,一分钟可以有多少个连接同时访问后端的服务器呢?
TIME_WAIT很多,可怕吗?
如果你通过 ss -tan state time-wait | wc -l 发现,系统中有很多TIME_WAIT,很多人都会紧张。多少算多呢?几百几千?如果是这个量级,其实真的没必要紧张。第一,这个量级,因为TIME_WAIT所占用的内存很少很少;因为记录和寻找可用的local port所消耗的CPU也基本可以忽略。
会占用内存吗?当然!任何你可以看到的数据,内核里都需要有相关的数据结构来保存这个数据啊。一条Socket处于TIME_WAIT状态,它也是一条“存在”的socket,内核里也需要有保持它的数据:
-
内核里有保存所有连接的一个hash table,这个hash table里面既包含TIME_WAIT状态的连接,也包含其他状态的连接。主要用于有新的数据到来的时候,从这个hash table里快速找到这条连接。不同的内核对这个hash table的大小设置不同,你可以通过dmesg命令去找到你的内核设置的大小:
-
还有一个hash table用来保存所有的bound ports,主要用于可以快速的找到一个可用的端口或者随机端口:
由于内核需要保存这些数据,必然,会占用一定的内存。
会消耗CPU吗?当然!每次找到一个随机端口,还是需要遍历一遍bound ports的吧,这必然需要一些CPU时间。
TIME_WAIT很多,既占内存又消耗CPU,这也是为什么很多人,看到TIME_WAIT很多,就蠢蠢欲动的想去干掉他们。其实,如果你再进一步去研究,1万条TIME_WAIT的连接,也就多消耗1M左右的内存,对现代的很多服务器,已经不算什么了。至于CPU,能减少它当然更好,但是不至于因为1万多个hash item就担忧。
如果,你真的想去调优,还是需要搞清楚别人的调优建议,以及调优参数背后的意义!
TIME_WAIT调优,你必须理解的几个调优参数
在具体的图例之前,我们还是先解析一下相关的几个参数存在的意义。
net.ipv4.tcp_timestamps
RFC 1323 在 TCP Reliability一节里,引入了timestamp的TCP option,两个4字节的时间戳字段,其中第一个4字节字段用来保存发送该数据包的时间,第二个4字节字段用来保存最近一次接收对方发送到数据的时间。有了这两个时间字段,也就有了后续优化的余地。
tcp_tw_reuse 和 tcp_tw_recycle就依赖这些时间字段。
net.ipv4.tcp_tw_reuse
字面意思,reuse TIME_WAIT状态的连接。
时刻记住一条socket连接,就是那个五元组,出现TIME_WAIT状态的连接,一定出现在主动关闭连接的一方。所以,当主动关闭连接的一方,再次向对方发起连接请求的时候(例如,客户端关闭连接,客户端再次连接服务端,此时可以复用了;负载均衡服务器,主动关闭后端的连接,当有新的HTTP请求,负载均衡服务器再次连接后端服务器,此时也可以复用),可以复用TIME_WAIT状态的连接。
通过字面解释,以及例子说明,你看到了,tcp_tw_reuse应用的场景:某一方,需要不断的通过“短连接”连接其他服务器,总是自己先关闭连接(TIME_WAIT在自己这方),关闭后又不断的重新连接对方。
那么,当连接被复用了之后,延迟或者重发的数据包到达,新的连接怎么判断,到达的数据是属于复用后的连接,还是复用前的连接呢?那就需要依赖前面提到的两个时间字段了。复用连接后,这条连接的时间被更新为当前的时间,当延迟的数据达到,延迟数据的时间是小于新连接的时间,所以,内核可以通过时间判断出,延迟的数据可以安全的丢弃掉了。
这个配置,依赖于连接双方,同时对timestamps的支持。同时,这个配置,仅仅影响outbound连接,即做为客户端的角色,连接服务端[connect(dest_ip, dest_port)]时复用TIME_WAIT的socket。
net.ipv4.tcp_tw_recycle
字面意思,销毁掉 TIME_WAIT。
当开启了这个配置后,内核会快速的回收处于TIME_WAIT状态的socket连接。多快?不再是2MSL,而是一个RTO(retransmission timeout,数据包重传的timeout时间)的时间,这个时间根据RTT动态计算出来,但是远小于2MSL。
有了这个配置,还是需要保障 丢失重传或者延迟的数据包,不会被新的连接(注意,这里不再是复用了,而是之前处于TIME_WAIT状态的连接已经被destroy掉了,新的连接,刚好是和某一个被destroy掉的连接使用了相同的五元组而已)所错误的接收。在启用该配置,当一个socket连接进入TIME_WAIT状态后,内核里会记录包括该socket连接对应的五元组中的对方IP等在内的一些统计数据,当然也包括从该对方IP所接收到的最近的一次数据包时间。当有新的数据包到达,只要时间晚于内核记录的这个时间,数据包都会被统统的丢掉。
这个配置,依赖于连接双方对timestamps的支持。同时,这个配置,主要影响到了inbound的连接(对outbound的连接也有影响,但是不是复用),即做为服务端角色,客户端连进来,服务端主动关闭了连接,TIME_WAIT状态的socket处于服务端,服务端快速的回收该状态的连接。
由此,如果客户端处于NAT的网络(多个客户端,同一个IP出口的网络环境),如果配置了tw_recycle,就可能在一个RTO的时间内,只能有一个客户端和自己连接成功(不同的客户端发包的时间不一致,造成服务端直接把数据包丢弃掉)。
我尽量尝试用文字解释清楚,但是,来点案例和图示,应该有助于我们彻底理解。
我们来看这样一个网络情况:
-
客户端IP地址为:180.172.35.150,我们可以认为是浏览器
-
负载均衡有两个IP,外网IP地址为 115.29.253.156,内网地址为10.162.74.10;外网地址监听80端口
-
负载均衡背后有两台Web服务器,一台IP地址为 10.162.74.43,监听80端口;另一台为 10.162.74.44,监听 80 端口
-
Web服务器会连接数据服务器,IP地址为 10.162.74.45,监听 3306 端口
这种简单的架构下,我们来看看,在不同的情况下,我们今天谈论的tw_reuse/tw_recycle对网络连接的影响。
先做个假定:
-
客户端通过HTTP/1.1连接负载均衡,也就是说,HTTP协议投Connection为keep-alive,所以我们假定,客户端 对 负载均衡服务器 的socket连接,客户端会断开连接,所以,TIME_WAIT出现在客户端
-
Web服务器和MySQL服务器的连接,我们假定,Web服务器上的程序在连接结束的时候,调用close操作关闭socket资源连接,所以,TIME_WAIT出现在 Web 服务器端。
那么,在这种假定下:
-
Web服务器上,肯定可以配置开启的配置:tcp_tw_reuse;如果Web服务器有很多连向DB服务器的连接,可以保证socket连接的复用。
-
那么,负载均衡服务器和Web服务器,谁先关闭连接,则决定了我们怎么配置tcp_tw_reuse/tcp_tw_recycle了
方案一:负载均衡服务器 首先关闭连接
在这种情况下,因为负载均衡服务器对Web服务器的连接,TIME_WAIT大都出现在负载均衡服务器上,所以,在负载均衡服务器上的配置:
-
net.ipv4.tcp_tw_reuse = 1 //尽量复用连接
-
net.ipv4.tcp_tw_recycle = 0 //不能保证客户端不在NAT的网络啊
在Web服务器上的配置为:
-
net.ipv4.tcp_tw_reuse = 1 //这个配置主要影响的是Web服务器到DB服务器的连接复用
-
net.ipv4.tcp_tw_recycle: 设置成1和0都没有任何意义。想一想,在负载均衡和它的连接中,它是服务端,但是TIME_WAIT出现在负载均衡服务器上;它和DB的连接,它是客户端,recycle对它并没有什么影响,关键是reuse
方案二:Web服务器首先关闭来自负载均衡服务器的连接
在这种情况下,Web服务器变成TIME_WAIT的重灾区。负载均衡对Web服务器的连接,由Web服务器首先关闭连接,TIME_WAIT出现在Web服务器上;Web服务器对DB服务器的连接,由Web服务器关闭连接,TIME_WAIT也出现在它身上,此时,负载均衡服务器上的配置:
-
net.ipv4.tcp_tw_reuse:0 或者 1 都行,都没有实际意义
-
net.ipv4.tcp_tw_recycle=0 //一定是关闭recycle
在Web服务器上的配置:
-
net.ipv4.tcp_tw_reuse = 1 //这个配置主要影响的是Web服务器到DB服务器的连接复用
-
net.ipv4.tcp_tw_recycle=1 //由于在负载均衡和Web服务器之间并没有NAT的网络,可以考虑开启recycle,加速由于负载均衡和Web服务器之间的连接造成的大量TIME_WAIT
回答几个大家提到的几个问题
1. 请问我们所说连接池可以复用连接,是不是意味着,需要等到上个连接time wait结束后才能再次使用?
所谓连接池复用,复用的一定是活跃的连接,所谓活跃,第一表明连接池里的连接都是ESTABLISHED的,第二,连接池做为上层应用,会有定时的心跳去保持连接的活跃性。既然连接都是活跃的,那就不存在有TIME_WAIT的概念了,在上篇里也有提到,TIME_WAIT是在主动关闭连接的一方,在关闭连接后才进入的状态。既然已经关闭了,那么这条连接肯定已经不在连接池里面了,即被连接池释放了。
2. 想请问下,作为负载均衡的机器随机端口使用完的情况下大量time_wait,不调整你文字里说的那三个参数,有其他的更好的方案吗?
第一,随机端口使用完,你可以通过调整/etc/sysctl.conf下的net.ipv4.ip_local_port_range配置,至少修改成 net.ipv4.ip_local_port_range=1024 65535,保证你的负载均衡服务器至少可以使用6万个随机端口,也即可以有6万的反向代理到后端的连接,可以支持每秒1000的并发(想一想,因为TIME_WAIT状态会持续1分钟后消失,所以一分钟最多有6万,每秒1000);如果这么多端口都使用完了,也证明你应该加服务器了,或者,你的负载均衡服务器需要配置多个IP地址,或者,你的后端服务器需要监听更多的端口和配置更多的IP(想一下socket的五元组)
第二,大量的TIME_WAIT,多大量?如果是几千个,其实不用担心,因为这个内存和CPU的消耗有一些,但是是可以忽略的。
第三,如果真的量很大,上万上万的那种,可以考虑,让后端的服务器主动关闭连接,如果后端服务器没有外网的连接只有负载均衡服务器的连接(主要是没有NAT网络的连接),可以在后端服务器上配置tw_recycle,然后同时,在负载均衡服务器上,配置tw_reuse。
3. 如果想深入的学习一下网络方面的知识,有什么推荐的?
学习网络比学一门编程语言“难”很多。所谓难,其实,是因为需要花很多的时间投入。我自己不算精通,只能说入门和理解。基本书可以推荐:《TCP/IP 协议详解》,必读;《TCP/IP高效编程:改善网络程序的44个技巧》,必读;《Unix环境高级编程》,必读;《Unix网络编程:卷一》,我只读过卷一;另外,还需要熟悉一下网络工具,tcpdump以及wireshark,我的notes里有一个一站式学习Wireshark:https://github.com/dafang/notebook/issues/114,也值得一读。有了这些积累,可能就是一些实践以及碎片化的学习和积累了。
写在最后
这篇文章我断断续续写了两天,内容找了多个地方去验证,包括看到Vincent Bernat的一篇文章以及Vincent在多个地方和别人的讨论。期间,我也花了一些时间和Vincent探讨了几个我没在tcp源码里翻找到的有疑问的地方。
我力求比散布在网上的文章做到准确并尽量整理的清晰一些。但是,也难免会
有疏漏或者有错误的地方,高手看到可以随时指正,并和我讨论,大家一起研究!
排查示例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
TIME - WAIT连接数过多
[robin@a.test.com ~]$ ss - a | grep TIME - WAIT - c
12206 [robin@a.test.com ~]$ ss - s
Total: 483 (kernel 550 )
TCP: 11362 (estab 200 , closed 11058 , orphaned 0 , synrecv 0 , timewait 11057 / 0 ), ports 6284
Transport Total IP IPv6 * 550 - -
RAW 0 0 0
UDP 8 8 0
TCP 304 300 4
INET 312 308 4
FRAG 0 0 0
[robin@a.test.com ~]$ sudo netstat - a | grep TIME_WAIT | wc - l
11923 [robin@a.test.com ~]$ 查看和哪个的连接数过多 [robin@a.test.com ~]$ ss - a | grep TIME - WAIT | awk '{print $5}' | awk - F ":" '{print $1}' | sort | uniq - c
| sort - k1 - rn | head
4352 10.4 . 14.24
1692 10.4 . 14.23
316 10.32 . 120.13
308 10.32 . 192.2
300 10.32 . 188.7
294 10.32 . 124.48
285 10.32 . 121.8
165 10.69 . 69.126
153 10.23 . 43.30
144 10.32 . 206.4
[robin@a.test.com ~]$ 原因是本机器的服务通过VIP调用org服务,但是代码中没有主动释放连接,导致的TIME - WAIT状态过多
|
本文转自 Tenderrain 51CTO博客,原文链接:http://blog.51cto.com/tenderrain/1860601