在学习 十四讲时,李群和李代数相互转换公式为
e
x
p
(
ϕ
∧
)
=
e
x
p
(
θ
a
∧
)
=
c
o
s
θ
I
+
(
1
−
c
o
s
θ
)
a
a
T
+
s
i
n
θ
a
∧
exp(\phi^{\wedge})=exp(\theta a^{\wedge})=cos\theta I+(1-cos\theta)aa^{T}+sin\theta a^{\wedge}
exp(ϕ∧)=exp(θa∧)=cosθI+(1−cosθ)aaT+sinθa∧
其证明过程可以参考四十讲
而在选在IMU 预积分中,李群和李代数相互转换公式为
e
x
p
(
ϕ
∧
)
=
I
+
s
i
n
(
∣
∣
ϕ
∣
∣
)
∣
∣
ϕ
∣
∣
ϕ
∧
+
1
−
c
o
s
(
∣
∣
ϕ
∣
∣
)
∣
∣
ϕ
∣
∣
2
(
ϕ
∧
)
2
exp(\phi^{\wedge})= I+\frac{sin(||\phi ||)}{||\phi||}\phi^{\wedge}+\frac{1-cos(||\phi ||)}{||\phi||^{2}}(\phi^{\wedge})^{2}
exp(ϕ∧)=I+∣∣ϕ∣∣sin(∣∣ϕ∣∣)ϕ∧+∣∣ϕ∣∣21−cos(∣∣ϕ∣∣)(ϕ∧)2
这是两种等价的表示方式
下边我们简单证明下:
ϕ
=
θ
a
⃗
a
∧
a
∧
=
a
a
T
−
I
\phi = \theta \vec{a} \\ a^{\wedge}a^{\wedge} = aa^{T}-I\\
ϕ=θa
a∧a∧=aaT−I
则有
∣
∣
ϕ
∣
∣
=
θ
ϕ
∧
=
θ
a
∧
=
∣
∣
ϕ
∣
∣
a
∧
a
∧
=
ϕ
∧
∣
∣
ϕ
∣
∣
(
ϕ
∧
)
2
=
θ
2
(
a
a
T
−
I
)
=
∣
∣
ϕ
∣
∣
2
(
a
a
T
−
I
)
a
a
T
=
(
ϕ
∧
)
2
∣
∣
ϕ
∣
∣
2
+
I
||\phi||=\theta\\ {\phi}^{\wedge} =\theta a^{\wedge}=||\phi||a^{\wedge}\\ a^{\wedge}=\frac{{\phi}^{\wedge} }{||\phi||}\\ ({\phi}^{\wedge})^{2} = \theta^{2}(aa^{T}-I)=||\phi||^{2}(aa^{T}-I)\\ aa^{T}=\frac{({\phi}^{\wedge})^{2}}{||\phi||^{2}}+I
∣∣ϕ∣∣=θϕ∧=θa∧=∣∣ϕ∣∣a∧a∧=∣∣ϕ∣∣ϕ∧(ϕ∧)2=θ2(aaT−I)=∣∣ϕ∣∣2(aaT−I)aaT=∣∣ϕ∣∣2(ϕ∧)2+I
带入
e
x
p
(
ϕ
∧
)
=
e
x
p
(
θ
a
∧
)
=
c
o
s
θ
I
+
(
1
−
c
o
s
θ
)
a
a
T
+
s
i
n
θ
a
∧
exp(\phi^{\wedge})=exp(\theta a^{\wedge})=cos\theta I+(1-cos\theta)aa^{T}+sin\theta a^{\wedge}
exp(ϕ∧)=exp(θa∧)=cosθI+(1−cosθ)aaT+sinθa∧
则有
e
x
p
(
ϕ
∧
)
=
c
o
s
∣
∣
ϕ
∣
∣
I
+
(
1
−
c
o
s
∣
∣
ϕ
∣
∣
)
∗
(
(
ϕ
∧
)
2
∣
∣
ϕ
∣
∣
2
+
I
)
+
s
i
n
∣
∣
ϕ
∣
∣
∗
ϕ
∧
∣
∣
ϕ
∣
∣
=
I
+
s
i
n
(
∣
∣
ϕ
∣
∣
)
∣
∣
ϕ
∣
∣
ϕ
∧
+
1
−
c
o
s
(
∣
∣
ϕ
∣
∣
)
∣
∣
ϕ
∣
∣
2
(
ϕ
∧
)
2
exp(\phi^{\wedge})=cos||\phi|| I+(1-cos||\phi||)*(\frac{({\phi}^{\wedge})^{2}}{||\phi||^{2}}+I)+sin||\phi|| *\frac{{\phi}^{\wedge} }{||\phi||}\\ =I+\frac{sin(||\phi ||)}{||\phi||}\phi^{\wedge}+\frac{1-cos(||\phi ||)}{||\phi||^{2}}(\phi^{\wedge})^{2}
exp(ϕ∧)=cos∣∣ϕ∣∣I+(1−cos∣∣ϕ∣∣)∗(∣∣ϕ∣∣2(ϕ∧)2+I)+sin∣∣ϕ∣∣∗∣∣ϕ∣∣ϕ∧=I+∣∣ϕ∣∣sin(∣∣ϕ∣∣)ϕ∧+∣∣ϕ∣∣21−cos(∣∣ϕ∣∣)(ϕ∧)2