1、JVM怎么判定对象是垃圾
(引用计数算法、可达性分析算法)
JVM有一个回收算法是引用计数算法,每当对象被引用一次,就+1,释放一个引用就-1,当垃圾回收时,引用计数为0的对象就会被GC掉。但这个方法有个问题,就是无法解决循环引用的问题。
循环引用就是对象A引用了对象B,对象B引用了对象A,构成了一个引用环。彼此都没发挥什么作用,但却不会被GC。为了解决这个问题,就有了可达性分析回收算法。
可达性分析:
算法中定义了几个GC Root对象,这几个root对象在GC时不会被JVM回收掉,然后通过这些对象像树枝一样向外延伸,被引用到的对象说明还存活使用,就不会被GC,没有被这些root对象引用到的就会被GC掉。从而解决了循环引用问题。
Root对象主要包括:
①系统类加载器(bootstrap)加载的类。
②JVM方法区中静态属性引用的对象。
③JVM常量池中引用的对象。
④JVM虚拟机栈中引用的对象。
⑤JVM本地方法栈中引用的对象。
⑥活动着的线程。
其中 object5 6 7 将被GC.
2、JVM堆内存模型与GC算法
JVM堆内存的优化是JVM性能优化的重点
由于对象存活于堆内存中,因此,GC 就显得格外重要。
4.回收垃圾对象内存的算法
4.1 Tracing算法(Tracing Collector) 或 标记—清除算法
标记—清除算法是最基础的收集算法,为了解决引用计数法的问题而提出。它使用了根集的概念,它分为“标记”和“清除”两个阶段:首先标记出所需回收的对象,在标记完成后统一回收掉所有被标记的对象,它的标记过程其实就是前面的根搜索算法中判定垃圾对象的标记过程。
优点:不需要进行对象的移动,并且仅对不存活的对象进行处理,在存活对象比较多的情况下极为高效。
缺点:(1)标记和清除过程的效率都不高。(这种方法需要使用一个空闲列表来记录所有的空闲区域以及大小。对空闲列表的管理会增加分配对象时的工作量。如图4.1所示。)。(2)标记清除后会产生大量不连续的内存碎片。虽然空闲区域的大小是足够的,但却可能没有一个单一区域能够满足这次分配所需的大小,因此本次分配还是会失败(在Java中就是一次OutOfMemoryError)不得不触发另一次垃圾收集动作。如图4.2所示。
4.2 Compacting算法(Compacting Collector) 或 标记—整理算法
该算法标记的过程与标记—清除算法中的标记过程一样,但对标记后出的垃圾对象的处理情况有所不同,它不是直接对可回收对象进行清理,而是让所有的对象都向一端移动,然后直接清理掉端边界以外的内存。在基于Compacting算法的收集器的实现中,一般增加句柄和句柄表。
优点:(1)经过整理之后,新对象的分配只需要通过指针碰撞便能完成(Pointer Bumping),相当简单。(2)使用这种方法空闲区域的位置是始终可知的,也不会再有碎片的问题了。
缺点:GC暂停的时间会增长,因为你需要将所有的对象都拷贝到一个新的地方,还得更新它们的引用地址。
4.3 Copying算法(Copying Collector)
该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收。它将内存按容量分为大小相等的两块,每次只使用其中的一块(对象面),当这一块的内存用完了,就将还存活着的对象复制到另外一块内存上面(空闲面),然后再把已使用过的内存空间一次清理掉。
复制算法比较适合于新生代(短生存期的对象),在老年代(长生存期的对象)中,对象存活率比较高,如果执行较多的复制操作,效率将会变低,所以老年代一般会选用其他算法,如标记—整理算法。一种典型的基于Coping算法的垃圾回收是stop-and-copy算法,它将堆分成对象区和空闲区,在对象区与空闲区的切换过程中,程序暂停执行。
优点:(1)标记阶段和复制阶段可以同时进行。(2)每次只对一块内存进行回收,运行高效。(3)只需移动栈顶指针,按顺序分配内存即可,实现简单。(4)内存回收时不用考虑内存碎片的出现(得活动对象所占的内存空间之间没有空闲间隔)。
缺点:需要一块能容纳下所有存活对象的额外的内存空间。因此,可一次性分配的最大内存缩小了一半。
4.4 Adaptive算法(Adaptive Collector)
在特定的情况下,一些垃圾收集算法会优于其它算法。基于Adaptive算法的垃圾收集器就是监控当前堆的使用情况,并将选择适当算法的垃圾收集器。
5 Java的堆内存(Java Heap Memory)
Java的堆内存基于Generation算法(Generational Collector)划分为新生代、年老代和持久代。新生代又被进一步划分为Eden和Survivor区,最后Survivor由FromSpace(Survivor0)和ToSpace(Survivor1)组成。所有通过new创建的对象的内存都在堆中分配,其大小可以通过-Xmx和-Xms来控制。
分代收集,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,可以将不同生命周期的对象分代,不同的代采取不同的回收算法(4.1-4.3)进行垃圾回收(GC),以便提高回收效率。
堆内存分区示意图:
Java的内存空间除了堆内存还有其他部分:
1)栈
每个线程执行每个方法的时候都会在栈中申请一个栈帧,每个栈帧包括局部变量区和操作数栈,用于存放此次方法调用过程中的临时变量、参数和中间结果。
2)本地方法栈
用于支持native方法的执行,存储了每个native方法调用的状态。
4)方法区
存放了要加载的类信息、静态变量、final类型的常量、属性和方法信息。JVM用持久代(PermanetGeneration)来存放方法区,可通过-XX:PermSize和-XX:MaxPermSize来指定最小值和最大值。
5.1堆内存分配区域:
1.年轻代(Young Generation)
几乎所有新生成的对象首先都是放在年轻代的。新生代内存按照8:1:1的比例分为一个Eden区和两个Survivor(Survivor0,Survivor1)区。大部分对象在Eden区中生成。当新对象生成,Eden Space申请失败(因为空间不足等),则会发起一次GC(Scavenge GC)。回收时先将Eden区存活对象复制到一个Survivor0区,然后清空Eden区,当这个Survivor0区也存放满了时,则将Eden区和Survivor0区存活对象复制到另一个Survivor1区,然后清空Eden和这个Survivor0区,此时Survivor0区是空的,然后将Survivor0区和Survivor1区交换,即保持Survivor1区为空, 如此往复。当Survivor1区不足以存放 Eden和Survivor0的存活对象时,就将存活对象直接存放到老年代。当对象在Survivor区躲过一次GC的话,其对象年龄便会加1,默认情况下,如果对象年龄达到15岁,就会移动到老年代中。若是老年代也满了就会触发一次Full GC,也就是新生代、老年代都进行回收。新生代大小可以由-Xmn来控制,也可以用-XX:SurvivorRatio来控制Eden和Survivor的比例。
2.年老代(Old Generation)
在年轻代中经历了N次垃圾回收后仍然存活的对象,就会被放到年老代中。因此,可以认为年老代中存放的都是一些生命周期较长的对象。内存比新生代也大很多(大概比例是1:2),当老年代内存满时触发Major GC即Full GC,Full GC发生频率比较低,老年代对象存活时间比较长,存活率标记高。一般来说,大对象会被直接分配到老年代。所谓的大对象是指需要大量连续存储空间的对象,最常见的一种大对象就是大数组。比如:
byte[] data = new byte[4*1024*1024]
这种一般会直接在老年代分配存储空间。
当然分配的规则并不是百分之百固定的,这要取决于当前使用的是哪种垃圾收集器组合和JVM的相关参数。
3.持久代(Permanent Generation)
用于存放静态文件(class类、方法)和常量等。持久代对垃圾回收没有显著影响,但是有些应用可能动态生成或者调用一些class,例如Hibernate 等,在这种时候需要设置一个比较大的持久代空间来存放这些运行过程中新增的类。对永久代的回收主要回收两部分内容:废弃常量和无用的类。
永久代空间在Java SE8特性中已经被移除。取而代之的是元空间(MetaSpace)。因此不会再出现“java.lang.OutOfMemoryError: PermGen error”错误。
5.2 堆内存分配策略明确以下三点:
(1)对象优先在Eden分配。
(2)大对象直接进入老年代。
(3)长期存活的对象将进入老年代。
5.3 对垃圾回收机制说明以下三点:
新生代GC(Minor GC/Scavenge GC):发生在新生代的垃圾收集动作。因为Java对象大多都具有朝生夕灭的特性,因此Minor GC非常频繁(不一定等Eden区满了才触发),一般回收速度也比较快。在新生代中,每次垃圾收集时都会发现有大量对象死去,只有少量存活,因此可选用复制算法来完成收集。
老年代GC(Major GC/Full GC):发生在老年代的垃圾回收动作。Major GC,经常会伴随至少一次Minor GC。由于老年代中的对象生命周期比较长,因此Major GC并不频繁,一般都是等待老年代满了后才进行Full GC,而且其速度一般会比Minor GC慢10倍以上。另外,如果分配了Direct Memory,在老年代中进行Full GC时,会顺便清理掉Direct Memory中的废弃对象。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用标记—清除算法或标记—整理算法来进行回收。
新生代采用空闲指针的方式来控制GC触发,指针保持最后一个分配的对象在新生代区间的位置,当有新的对象要分配内存时,用于检查空间是否足够,不够就触发GC。当连续分配对象时,对象会逐渐从Eden到Survivor,最后到老年代。
6 垃圾回收器(GC)
6.1 按执行机制划分Java有四种类型的垃圾回收器:
(1)串行垃圾回收器(Serial Garbage Collector)
(2)并行垃圾回收器(Parallel Garbage Collector)
(3)并发标记扫描垃圾回收器(CMS Garbage Collector)
(4)G1垃圾回收器(G1 Garbage Collector)
每种类型都有自己的优势与劣势,在很大程度上有 所不同并且可以为我们提供完全不同的应用程序性能。重要的是,我们编程的时候可以通过向JVM传递参数选择垃圾回收器类型。每种类型理解每种类型的垃圾回收器并且根据应用程序选择进行正确的选择是非常重要的。
1、串行垃圾回收器
串行垃圾回收器通过持有应用程序所有的线程进行工作。它为单线程环境设计,只使用一个单独的线程进行垃圾回收,通过冻结所有应用程序线程进行工作,所以可能不适合服务器环境。它最适合的是简单的命令行程序(单CPU、新生代空间较小及对暂停时间要求不是非常高的应用)。是client级别默认的GC方式。
通过JVM参数-XX:+UseSerialGC可以使用串行垃圾回收器。
2、并行垃圾回收器
并行垃圾回收器也叫做 throughput collector 。它是JVM的默认垃圾回收器。与串行垃圾回收器不同,它使用多线程进行垃圾回收。相似的是,当执行垃圾回收的时候它也会冻结所有的应用程序线程。
适用于多CPU、对暂停时间要求较短的应用上,是server级别默认采用的GC方式。可用-XX:+UseParallelGC来强制指定,用-XX:ParallelGCThreads=4来指定线程数。
3、并发标记扫描垃圾回收器
并发标记垃圾回收使用多线程扫描堆内存,标记需要清理的实例并且清理被标记过的实例。并发标记垃圾回收器只会在下面两种情况持有应用程序所有线程。
(1)当标记的引用对象在Tenured区域;
(2)在进行垃圾回收的时候,堆内存的数据被并发的改变。
相比并行垃圾回收器,并发标记扫描垃圾回收器使用更多的CPU来确保程序的吞吐量。如果我们可以为了更好的程序性能分配更多的CPU,那么并发标记上扫描垃圾回收器是更好的选择相比并发垃圾回收器。
通过JVM参数 XX:+USeParNewGC 打开并发标记扫描垃圾回收器。
以上各种GC机制是需要组合使用的,指定方式由下表所示:
表6.0 不同垃圾回收器的组合方式
6.3 HotSpot(JDK 7)虚拟机提供的几种垃圾收集器
垃圾收集算法是内存回收的理论基础,而垃圾收集器就是内存回收的具体实现。用户可以根据自己的需求组合出各个年代使用的收集器。
1.Serial(SerialMSC)(Copying算法)
Serial收集器是最基本最古老的收集器,它是一个单线程收集器,并且在它进行垃圾收集时,必须暂停所有用户线程。Serial收集器是针对新生代的收集器,采用的是Copying算法。
2.Serial Old (标记—整理算法)
Serial Old收集器是针对老年代的收集器,采用的是Mark-Compact算法。它的优点是实现简单高效,但是缺点是会给用户带来停顿。
2.ParNew (Copying算法)
ParNew收集器是新生代收集器,Serial收集器的多线程版本。使用多个线程进行垃圾收集,在多核CPU环境下有着比Serial更好的表现。
3.Parallel Scavenge (Copying算法)
Parallel Scavenge收集器是一个新生代的多线程收集器(并行收集器),它在回收期间不需要暂停其他用户线程,其采用的是Copying算法,该收集器与前两个收集器有所不同,它主要是为了达到一个可控的吞吐量。追求高吞吐量,高效利用CPU。吞吐量一般为99%。 吞吐量= 用户线程时间/(用户线程时间+GC线程时间)。适合后台应用等对交互相应要求不高的场景。
4.Parallel Old(ParallelMSC)(标记—整理算法)
Parallel Old是Parallel Scavenge收集器的老年代版本(并行收集器),使用多线程和Mark-Compact算法。吞吐量优先。
5.CMS (标记—整理算法)
CMS(Current Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,它是一种并发收集器,采用的是Mark-Sweep算法。高并发、低停顿,追求最短GC回收停顿时间,CPU占用比较高。响应时间快,停顿时间短,多核CPU 追求高响应时间的选择。
6.G1
G1收集器是当今收集器技术发展最前沿的成果,它是一款面向服务端应用的收集器,它能充分利用多CPU、多核环境。因此它是一款并行与并发收集器,并且它能建立可预测的停顿时间模型。
G1垃圾回收器适用于堆内存很大的情况,他将堆内存分割成不同的区域,并且并发的对其进行垃圾回收。G1也可以在回收内存之后对剩余的堆内存空间进行压缩。并发扫描标记垃圾回收器在STW情况下压缩内存。G1垃圾回收会优先选择第一块垃圾最多的区域。
通过JVM参数 –XX:+UseG1GC 使用G1垃圾回收器。
Java 8 的新特性:
在使用G1垃圾回收器的时候,通过 JVM参数 -XX:+UseStringDeduplication 。 我们可以通过删除重复的字符串,只保留一个char[]来优化堆内存。这个选择在Java 8 u 20被引入。
我们给出了全部的几种Java垃圾回收器,需要根据应用场景,硬件性能和吞吐量需求来决定使用哪一种。
新生代收集器使用的收集器:Serial、PraNew、Parallel Scavenge。
老年代收集器使用的收集器:Serial Old、Parallel Old、CMS。
7 垃圾回收执行时间和注意事项
GC分为Scavenge GC和Full GC。
Scavenge GC :发生在Eden区的垃圾回收。
Full GC :对整个堆进行整理,包括Young、Tenured和Perm。Full GC因为需要对整个堆进行回收,所以比Scavenge GC要慢,因此应该尽可能减少Full GC的次数。在对JVM调优的过程中,很大一部分工作就是对于FullGC的调节。
有如下原因可能导致Full GC:
1.年老代(Tenured)被写满;
2.持久代(Perm)被写满;
3.System.gc()被显示调用;
4.上一次GC之后Heap的各域分配策略动态变化.