1.跟搜索算法:
JVM中对内存进行回收时,需要判断对象是否仍在使用中,可以通过GC Roots Tracing辨别。
定义:
通过一系列名为”GCRoots”的对象作为起始点,从这个节点向下搜索,搜索走过的路径称为ReferenceChain,当一个对象到GCRoots没有任何ReferenceChain相连时,(图论:这个对象不可到达),则证明这个对象不可用。
可以作为GC Root 引用点的是:
a.虚拟机栈(栈桢中的本地变量表)中的引用的对象
b.方法区中的类静态属性引用的对象
c.方法区中的常量引用的对象
d.本地方法栈中JNI的引用的对象
GC管理的主要区域是Java堆,一般情况下只针对堆进行垃圾回收。方法区、栈和本地方法区不被GC所管理,因而选择这些区域内的对象作为GC roots,被GC roots引用的对象不被GC回收。
一.GC如何判断一个对象为”垃圾”的
java堆内存中存放着几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中哪些还“存活”着,哪些已经“死去”。那么GC具体通过什么手段来判断一个对象已经”死去”的?
1.引用计数算法(已被淘汰的算法)
给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的。
目前主流的java虚拟机都摒弃掉了这种算法,最主要的原因是它很难解决对象 之间相互循环引用的问题。尽管该算法执行效率很高。
例如:在testGC()方法中,对象objA和objB都有字段instance,赋值令objA.instance=objB及objB.instance=objA,除此之外这两个对象再无任何引用,实际上这两个对象都已经不能再被访问,但是它们因为相互引用着对象方,异常它们的引用计数都不为0,于是引用计数算法无法通知GC收集器回收它们。
2.可达性分析算法
目前主流的编程语言(java,C#等)的主流实现中,都是称通过可达性分析(Reachability Analysis)来判定对象是否存活的。这个算法的基本思路就是通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说,就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。如下图所示,对象object 5、object 6、object 7虽然互相有关联,但是它们到GC Roots是不可达的,所以它们将会被判定为是可回收的对象。
这里写图片描述
二.被GC判断为”垃圾”的对象一定会回收吗
即使在可达性分析算法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。(即意味着直接回收)
如果这个对象被判定为有必要执行finalize()方法,那么这个对象将会放置在一个叫做F-Queue的队列之中,并在稍后由一个由虚拟机自动建立的、低优先级的Finalizer线程去执行它。这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束,这样做的原因是,如果一个对象在finalize()方法中执行缓慢,或者发生了死循环(更极端的情况),将很可能会导致F-Queue队列中其他对象永久处于等待,甚至导致整个内存回收系统崩溃。
finalize()方法是对象逃脱死亡命运的最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移除出“即将回收”的集合;如果对象这时候还没有逃脱,那基本上它就真的被回收了。
代码示例:
public class FinalizeEscapeGC {
public static FinalizeEscapeGC SAVE_HOOK = null;
public void isAlive() {
System.out.println("yes,i am still alive:)");
}
@Override
protected void finalize() throws Throwable {
super.finalize();
System.out.println("finalize mehtod executed!");
FinalizeEscapeGC.SAVE_HOOK = this;
}
public static void main(String[] args) throws Throwable {
SAVE_HOOK = new FinalizeEscapeGC();
// 对象第一次成功拯救自己
SAVE_HOOK = null;
System.gc();
// 因为finalize方法优先级很低,所以暂停0.5秒以等待它
Thread.sleep(500);
if (SAVE_HOOK != null) {
SAVE_HOOK.isAlive();
} else {
System.out.println("no,i am dead:(");
}
// 下面这段代码与上面的完全相同,但是这次自救却失败了
SAVE_HOOK = null;
System.gc();
// 因为finalize方法优先级很低,所以暂停0.5秒以等待它
Thread.sleep(500);
if (SAVE_HOOK != null) {
SAVE_HOOK.isAlive();
} else {
System.out.println("no,i am dead:(");
}
}
}
运行结果:
finalize mehtod executed!
yes,i am still alive:)
no,i am dead:(
SAVE_HOOK对象的finalize()方法确实被GC收集器触发过,并且在被收集前成功逃脱了。另外一个值得注意的地方是,代码中有两段完全一样的代码片段,执行结果却是一次逃脱成功,一次失败,这是因为任何一个对象的finalize()方法都只会被系统自动调用一次,如果对象面临下一次回收,它的finalize()方法不会被再次执行,因此第二段代码的自救行动失败了。因为finalize()方法已经被虚拟机调用过,虚拟机都视为“没有必要执行”。(即意味着直接回收)
finalize()方法
大致描述一下finalize流程:当对象变成(GC Roots)不可达时,GC会判断该对象是否覆盖了finalize方法,若未覆盖,则直接将其回收。否则,若对象未执行过finalize方法,将其放入F-Queue队列,由一低优先级线程执行该队列中对象的finalize方法。执行finalize方法完毕后,GC会再次判断该对象是否可达,若不可达,则进行回收,否则,对象“复活”。
垃圾回收器准备释放内存的时候,会先调用finalize()。
(1).对象不一定会被回收。
(2).垃圾回收不是析构函数。
(3).垃圾回收只与内存有关。
(4).垃圾回收和finalize()都是靠不住的,只要JVM还没有快到耗尽内存的地步,它是不会浪费时间进行垃圾回收
之所以要使用finalize(),是存在着垃圾回收器不能处理的特殊情况。假定你的对象(并非使用new方法)获得了一块“特殊”的内存区域,由于垃圾回收器只知道那些显示地经由new分配的内存空间,所以它不知道该如何释放这块“特殊”的内存区域,那么这个时候Java允许在类中定义一个由finalize()方法。
特殊的区域例如:1)由于在分配内存的时候可能采用了类似C语言的做法,而非JAVA的通常new做法。这种情况主要发生在native method中,比如native method调用了C/C++方法malloc()函数系列来分配存储空间,但是除非调用free()函数,否则这些内存空间将不会得到释放,那么这个时候就可能造成内存泄漏。但是由于free()方法是在C/C++中的函数,所以finalize()中可以用本地方法来调用它。以释放这些“特殊”的内存空间。2)又或者打开的文件资源,这些资源不属于垃圾回收器的回收范围。
换言之,finalize()的主要用途是释放一些其他做法开辟的内存空间,以及做一些清理工作。因为在JAVA中并没有提够像“析构”函数或者类似概念的函数,要做一些类似清理工作的时候,必须自己动手创建一个执行清理工作的普通方法,也就是override Object这个类中的finalize()方法。例如,假设某一个对象在创建过程中会将自己绘制到屏幕上,如果不是明确地从屏幕上将其擦出,它可能永远都不会被清理。如果在finalize()加入某一种擦除功能,当GC工作时,finalize()得到了调用,图像就会被擦除。要是GC没有发生,那么这个图像就会被一直保存下来。
一旦垃圾回收器准备好释放对象占用的存储空间,首先会去调用finalize()方法进行一些必要的清理工作。只有到下一次再进行垃圾回收动作的时候,才会真正释放这个对象所占用的内存空间。
在普通的清除工作中,为清除一个对象,那个对象的用户必须在希望进行清除的地点调用一个清除方法。这与C++"析构函数"的概念稍有抵触。在C++中,所有对象都会破坏(清除)。或者换句话说,所有对象都"应该"破坏。若将C++对象创建成一个本地对象,比如在堆栈中创建(在Java中是不可能的,Java都在堆中),那么清除或破坏工作就会在"结束花括号"所代表的、创建这个对象的作用域的末尾进行。若对象是用new创建的(类似于Java),那么当程序员调用C++的 delete命令时(Java没有这个命令),就会调用相应的析构函数。若程序员忘记了,那么永远不会调用析构函数,我们最终得到的将是一个内存"漏洞",另外还包括对象的其他部分永远不会得到清除。
相反,Java不允许我们创建本地(局部)对象–无论如何都要使用new。但在Java中,没有"delete"命令来释放对象,因为垃圾回收器会帮助我们自动释放存储空间。所以如果站在比较简化的立场,我们可以说正是由于存在垃圾回收机制,所以Java没有析构函数。然而,随着以后学习的深入,就会知道垃圾收集器的存在并不能完全消除对析构函数的需要,或者说不能消除对析构函数代表的那种机制的需要(原因见下一段。另外finalize()函数是在垃圾回收器准备释放对象占用的存储空间的时候被调用的,绝对不能直接调用finalize(),所以应尽量避免用它)。若希望执行除释放存储空间之外的其他某种形式的清除工作,仍然必须调用Java中的一个方法。它等价于C++的析构函数,只是没后者方便。
在C++中所有的对象运用delete()一定会被销毁,而JAVA里的对象并非总会被垃圾回收器回收。In another word, 1 对象可能不被垃圾回收,2 垃圾回收并不等于“析构”,3 垃圾回收只与内存有关。也就是说,并不是如果一个对象不再被使用,是不是要在finalize()中释放这个对象中含有的其它对象呢?不是的。因为无论对象是如何创建的,垃圾回收器都会负责释放那些对象占有的内存。
参考:
http://blog.csdn.net/u010744711/article/details/51371535
http://blog.csdn.net/time_hunter/article/details/12405127