一、算法步骤
快速排序的基本思想是:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
算法步骤:
二、运行过程图示
虽然快速排序称为分治法,但分治法这三个字显然无法很好的概括快速排序的全部步骤。因此我的对快速排序作了进一步的说明:挖坑填数+分治法:
先来看实例吧,定义下面再给出(最好能用自己的话来总结定义,这样对实现代码会有帮助)。
以一个数组作为示例,取区间第一个数为基准数。
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
72 |
6 |
57 |
88 |
60 |
42 |
83 |
73 |
48 |
85 |
初始时,i = 0; j = 9; X = a[i] = 72
由于已经将a[0]中的数保存到X中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从j开始向前找一个比X小或等于X的数。当j=8,符合条件,将a[8]挖出再填到上一个坑a[0]中。a[0]=a[8]; i++; 这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。这次从i开始向后找一个大于X的数,当i=3,符合条件,将a[3]挖出再填到上一个坑中a[8]=a[3]; j--;
数组变为:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
48 |
6 |
57 |
88 |
60 |
42 |
83 |
73 |
88 |
85 |
i = 3; j = 7; X=72
(注意:两个88是因为a[8]=a[3])
再重复上面的步骤,先从后向前找,再从前向后找。
从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;
从i开始向后找,当i=5时,由于i==j退出。
此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将X填入a[5]。
数组变为:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
48 |
6 |
57 |
42 |
60 |
72 |
83 |
73 |
88 |
85 |
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
三、实现方法
1.递归实现
方法1:
对挖坑填数进行总结
1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。
照着这个总结很容易实现挖坑填数的代码:
int AdjustArray(int s[], int l, int r) //返回调整后基准数的位置 { int i = l, j = r; int x = s[l]; //s[l]即s[i]就是第一个坑 while (i < j) { // 从右向左找小于x的数来填s[i] while(i < j && s[j] >= x) j--; if(i < j) { s[i] = s[j]; //将s[j]填到s[i]中,s[j]就形成了一个新的坑 i++; } // 从左向右找大于或等于x的数来填s[j] while(i < j && s[i] < x) i++; if(i < j) { s[j] = s[i]; //将s[i]填到s[j]中,s[i]就形成了一个新的坑 j--; } } //退出时,i等于j。将x填到这个坑中。 s[i] = x; return i; } 再写分治法的代码: void quick_sort1(int s[], int l, int r) { if (l < r) { int i = AdjustArray(s, l, r);//先成挖坑填数法调整s[] quick_sort1(s, l, i - 1); // 递归调用 quick_sort1(s, i + 1, r); } } 这样的代码显然不够简洁,对其组合整理下: //快速排序 void quick_sort(int s[], int l, int r) { if (l < r) { //Swap(s[l], s[(l + r) / 2]); //将中间的这个数和第一个数交换 参见注1 int i = l, j = r, x = s[l]; while (i < j) { while(i < j && s[j] >= x) // 从右向左找第一个小于x的数 j--; if(i < j) s[i++] = s[j]; while(i < j && s[i] < x) // 从左向右找第一个大于等于x的数 i++; if(i < j) s[j--] = s[i]; } s[i] = x; quick_sort(s, l, i - 1); // 递归调用 quick_sort(s, i + 1, r); } } int main(){ int array[]={72,6,57,88,60,42,83,73,48,85}; quick_sort(array,0,9);//或者quick_qort1() for(int i = 0 ; i <= 9 ; i++) cout<<array[i]<<" "; cout<<endl; return 0; }
2.非递归(用栈模拟)
#include<iostream> #include<stack> struct Num { int low,high; Num(int low = 0, int high = 0) { this->low = low; this->high = high; } }; void sort(int val[],int ,int ); int main(int argc, _TCHAR* argv[]) { int arg[5] = {90,70,18,30,520}; sort(arg,0,4); for(int i = 0; i < 5; i++) { std::cout<<arg[i]<<" "; } system("pause"); return 0; } void sort(int arr[], int begin, int end) { std::stack<Num> myStack; myStack.push(Num(begin, end)); while(!myStack.empty()) { int i = myStack.top().low; int j = myStack.top().high; int b = i; int e = j; myStack.pop(); if(i >= j) continue; int key = arr[i]; while(i < j) { while(i < j && arr[j] >= key) j--; if(i < j) arr[i++] = arr[j]; while(i < j && arr[i] <= key) i++; if(i < j) arr[j--] = arr[i]; } arr[i] = key; myStack.push(Num(b, i - 1)); myStack.push(Num(i + 1, e)); } }