转自:http://blog.csdn.net/vanbreaker/article/details/7955713
版权声明:本文为博主原创文章,未经博主允许不得转载。
在pte_handle_fault()中,如果触发异常的页存在于主存中,那么该异常往往是由写了一个只读页触发的,此时需要进行COW(写时复制操作)。如当一个父进程通过fork()创建了一个子进程时,子进程将会共享父进程的页框。之后,无论是父进程还是子进程要对相应的内存进行写操作,都要进行COW,也就是为自己重新分配一个页框,并把之前的数据复制到页框中去,再写。
- static inline int handle_pte_fault(struct mm_struct *mm,
- struct vm_area_struct *vma, unsigned long address,
- pte_t *pte, pmd_t *pmd, unsigned int flags)
- {
- pte_t entry;
- spinlock_t *ptl;
- entry = *pte;
- ...
- ...
- ...
- /********页在主存中的情况***********/
- ptl = pte_lockptr(mm, pmd);
- spin_lock(ptl);
- if (unlikely(!pte_same(*pte, entry)))
- goto unlock;
- if (flags & FAULT_FLAG_WRITE) {//异常由写访问触发
- if (!pte_write(entry))//而对应的页是不可写的
- return do_wp_page(mm, vma, address, //此时必须进行写时复制的操作
- pte, pmd, ptl, entry);
- entry = pte_mkdirty(entry);
- }
- entry = pte_mkyoung(entry);
- if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
- update_mmu_cache(vma, address, entry);
- } else {
- /*
- * This is needed only for protection faults but the arch code
- * is not yet telling us if this is a protection fault or not.
- * This still avoids useless tlb flushes for .text page faults
- * with threads.
- */
- if (flags & FAULT_FLAG_WRITE)
- flush_tlb_page(vma, address);
- }
- unlock:
- pte_unmap_unlock(pte, ptl);
- return 0;
- }
可以看到,hand_pte_fault()函数处理页存在于主存中的情况的关键操作都集中在do_wp_page()函数上。该函数是用来处理COW的,不过在COW之前先要做一些检查,比如说,如果对应的页只有一个进程使用,那么便可以直接修改页的权限为可读可写,而不进行COW。总之,不到不得以的情况下是不会进行COW的。
- static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- spinlock_t *ptl, pte_t orig_pte)
- {
- struct page *old_page, *new_page;
- pte_t entry;
- int reuse = 0, ret = 0;
- int page_mkwrite = 0;
- struct page *dirty_page = NULL;
- old_page = vm_normal_page(vma, address, orig_pte);//获取共享页
- if (!old_page) {//获取共享页失败
- /*
- * VM_MIXEDMAP !pfn_valid() case
- *
- * We should not cow pages in a shared writeable mapping.
- * Just mark the pages writable as we can't do any dirty
- * accounting on raw pfn maps.
- */
- /*如果vma的映射本来就是共享且可写的,则跳转至reuse直接使用orig_pte对应的页*/
- if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
- (VM_WRITE|VM_SHARED))
- goto reuse;
- /*否则跳转至gotten分配一个页*/
- goto gotten;
- }
- /*
- * Take out anonymous pages first, anonymous shared vmas are
- * not dirty accountable.
- */
- /*下面首先判断匿名页的情况,如果old_page是匿名页,并且只有一个进程使用它(reuse为1),则
- 则直接使用该页*/
- if (PageAnon(old_page) && !PageKsm(old_page)) {
- /*这里先判断是否有其他进程竞争,修改了页表*/
- if (!trylock_page(old_page)) {
- page_cache_get(old_page);
- pte_unmap_unlock(page_table, ptl);
- lock_page(old_page);
- page_table = pte_offset_map_lock(mm, pmd, address,
- &ptl);
- if (!pte_same(*page_table, orig_pte)) {
- unlock_page(old_page);
- page_cache_release(old_page);
- goto unlock;
- }
- page_cache_release(old_page);
- }
- /*确定没有其他进程竞争,则进行reuse判断,通过reuse_swap_page()函数判断
- old_page的_mapcount字段是否为0,是的话则表明只有一个进程使用该匿名页*/
- reuse = reuse_swap_page(old_page);
- unlock_page(old_page);
- } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
- (VM_WRITE|VM_SHARED))) {//如果vma的映射本来就是共享且可写的
- /*
- * Only catch write-faults on shared writable pages,
- * read-only shared pages can get COWed by
- * get_user_pages(.write=1, .force=1).
- */
- if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
- struct vm_fault vmf;
- int tmp;
- vmf.virtual_address = (void __user *)(address &
- PAGE_MASK);
- vmf.pgoff = old_page->index;
- vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
- vmf.page = old_page;
- /*
- * Notify the address space that the page is about to
- * become writable so that it can prohibit this or wait
- * for the page to get into an appropriate state.
- *
- * We do this without the lock held, so that it can
- * sleep if it needs to.
- */
- page_cache_get(old_page);//增加old_page的引用计数作为保护
- pte_unmap_unlock(page_table, ptl);
- /*这里通知即将修改页的权限*/
- tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
- /*如果无法修改的话,则跳转到unwritable_page*/
- if (unlikely(tmp &
- (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
- ret = tmp;
- goto unwritable_page;
- }
- if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
- lock_page(old_page);
- if (!old_page->mapping) {
- ret = 0; /* retry the fault */
- unlock_page(old_page);
- goto unwritable_page;
- }
- } else
- VM_BUG_ON(!PageLocked(old_page));
- /*
- * Since we dropped the lock we need to revalidate
- * the PTE as someone else may have changed it. If
- * they did, we just return, as we can count on the
- * MMU to tell us if they didn't also make it writable.
- */
- /*走到这里表示已经成功修改了页的权限了,这里同样重新获取页表,判断是否和之前一致*/
- page_table = pte_offset_map_lock(mm, pmd, address,
- &ptl);
- if (!pte_same(*page_table, orig_pte)) {
- unlock_page(old_page);
- page_cache_release(old_page);
- goto unlock;
- }
- page_mkwrite = 1;
- }
- dirty_page = old_page;
- get_page(dirty_page);
- reuse = 1;
- }
- if (reuse) {//reuse处理,也就是说不进行COW,可以直接在old_page上进行写操作
- reuse:
- flush_cache_page(vma, address, pte_pfn(orig_pte));
- entry = pte_mkyoung(orig_pte);//标记_PAGE_ACCESSED位
- entry = maybe_mkwrite(pte_mkdirty(entry), vma);//将页的权限修改为可读可写,并且标记为脏页
- if (ptep_set_access_flags(vma, address, page_table, entry,1))
- update_mmu_cache(vma, address, entry);
- ret |= VM_FAULT_WRITE;
- goto unlock;
- }
- /*
- * Ok, we need to copy. Oh, well..
- */
- /***************终于走到了不得已的一步了,下面只好进行COW了********************/
- page_cache_get(old_page);
- gotten:
- pte_unmap_unlock(page_table, ptl);
- if (unlikely(anon_vma_prepare(vma)))
- goto oom;
- if (is_zero_pfn(pte_pfn(orig_pte))) {
- new_page = alloc_zeroed_user_highpage_movable(vma, address);//分配一个零页面
- if (!new_page)
- goto oom;
- } else {
- new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);//分配一个非零页面
- if (!new_page)
- goto oom;
- cow_user_page(new_page, old_page, address, vma);//将old_page中的数据拷贝到new_page
- }
- __SetPageUptodate(new_page);
- /*
- * Don't let another task, with possibly unlocked vma,
- * keep the mlocked page.
- */
- if ((vma->vm_flags & VM_LOCKED) && old_page) {
- lock_page(old_page); /* for LRU manipulation */
- clear_page_mlock(old_page);
- unlock_page(old_page);
- }
- if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
- goto oom_free_new;
- /*
- * Re-check the pte - we dropped the lock
- */
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (likely(pte_same(*page_table, orig_pte))) {
- if (old_page) {
- if (!PageAnon(old_page)) {
- dec_mm_counter(mm, file_rss);
- inc_mm_counter(mm, anon_rss);
- }
- } else
- inc_mm_counter(mm, anon_rss);
- flush_cache_page(vma, address, pte_pfn(orig_pte));
- entry = mk_pte(new_page, vma->vm_page_prot);//获取new_page的pte
- entry = maybe_mkwrite(pte_mkdirty(entry), vma);//修改new_page的权限
- /*
- * Clear the pte entry and flush it first, before updating the
- * pte with the new entry. This will avoid a race condition
- * seen in the presence of one thread doing SMC and another
- * thread doing COW.
- */
- ptep_clear_flush(vma, address, page_table);
- page_add_new_anon_rmap(new_page, vma, address);
- /*
- * We call the notify macro here because, when using secondary
- * mmu page tables (such as kvm shadow page tables), we want the
- * new page to be mapped directly into the secondary page table.
- */
- set_pte_at_notify(mm, address, page_table, entry);
- update_mmu_cache(vma, address, entry);
- if (old_page) {
- /*
- * Only after switching the pte to the new page may
- * we remove the mapcount here. Otherwise another
- * process may come and find the rmap count decremented
- * before the pte is switched to the new page, and
- * "reuse" the old page writing into it while our pte
- * here still points into it and can be read by other
- * threads.
- *
- * The critical issue is to order this
- * page_remove_rmap with the ptp_clear_flush above.
- * Those stores are ordered by (if nothing else,)
- * the barrier present in the atomic_add_negative
- * in page_remove_rmap.
- *
- * Then the TLB flush in ptep_clear_flush ensures that
- * no process can access the old page before the
- * decremented mapcount is visible. And the old page
- * cannot be reused until after the decremented
- * mapcount is visible. So transitively, TLBs to
- * old page will be flushed before it can be reused.
- */
- page_remove_rmap(old_page);
- }
- /* Free the old page.. */
- new_page = old_page;
- ret |= VM_FAULT_WRITE;
- } else
- mem_cgroup_uncharge_page(new_page);
- if (new_page)
- page_cache_release(new_page);
- if (old_page)
- page_cache_release(old_page);
- unlock:
- pte_unmap_unlock(page_table, ptl);
- if (dirty_page) {
- /*
- * Yes, Virginia, this is actually required to prevent a race
- * with clear_page_dirty_for_io() from clearing the page dirty
- * bit after it clear all dirty ptes, but before a racing
- * do_wp_page installs a dirty pte.
- *
- * do_no_page is protected similarly.
- */
- if (!page_mkwrite) {
- wait_on_page_locked(dirty_page);
- set_page_dirty_balance(dirty_page, page_mkwrite);
- }
- put_page(dirty_page);
- if (page_mkwrite) {
- struct address_space *mapping = dirty_page->mapping;
- set_page_dirty(dirty_page);
- unlock_page(dirty_page);
- page_cache_release(dirty_page);
- if (mapping) {
- /*
- * Some device drivers do not set page.mapping
- * but still dirty their pages
- */
- balance_dirty_pages_ratelimited(mapping);
- }
- }
- /* file_update_time outside page_lock */
- if (vma->vm_file)
- file_update_time(vma->vm_file);
- }
- return ret;
- oom_free_new:
- page_cache_release(new_page);
- oom:
- if (old_page) {
- if (page_mkwrite) {
- unlock_page(old_page);
- page_cache_release(old_page);
- }
- page_cache_release(old_page);
- }
- return VM_FAULT_OOM;
- unwritable_page:
- page_cache_release(old_page);
- return ret;
- }
【作者】张昺华
【新浪微博】 张昺华--sky
【twitter】 @sky2030_
【facebook】 张昺华 zhangbinghua
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.