满满的技术干货!Hadoop*会议Apache Hadoop Summit精华讲义分享

Apache Hadoop Summit是Hadoop技术的*会议,这里大咖云集,一同探讨世界上最新的Hadoop发展动态以及产品应用和技术实践。


本文整理了Apache Hadoop Summit  Tokyo 2016上的精选演讲的讲义,无论是你想要的是Hadoop发展前沿,是Hadoop优化技巧,还是技术最佳实践,统统都在这里!


【Hadoop Summit Tokyo 2016】Apache NiFi速成课

【Hadoop Summit Tokyo 2016】重建大规模Web跟踪设施

【Hadoop Summit Tokyo 2016】利用电力公司智能电表数据比较Spark SQL与Hive

【Hadoop Summit Tokyo 2016】雅虎日本的大规模Hadoop集群网络

【Hadoop Summit Tokyo 2016】东日本可口可乐公司Hadoop之旅,从一滴到一瓶

【Hadoop Summit Tokyo 2016】基于容器规格的Apache Hadoop/Spark集群框架

【Hadoop Summit Tokyo 2016】为什么我的Hadoop集群运行这么慢?

【Hadoop Summit Tokyo 2016】Apache Hive在完全支持SQL规范上取的主要进步

【Hadoop Summit Tokyo 2016】使用Apache Ambari简化Hadoop DevOps

【Hadoop Summit Tokyo 2016】Rakuten是如何解决由于大规模多租户Hadoop集群造成的迷之问题的

【Hadoop Summit Tokyo 2016】中型组织的数据基础设施架构:收集、存储和分析的技巧

【Hadoop Summit Tokyo 2016】Apache NiFi 1.0概论

【Hadoop Summit Tokyo 2016】Hivemall: Apache Hive/Spark/Pig 的可扩展机器学习库

【Hadoop Summit Tokyo 2016】上云还是回到服务器:混合分析一瞥

【Hadoop Summit Tokyo 2016】将HDFS演进成广义分布式存储子系统

【Hadoop Summit Tokyo 2016】Apache Phoenix与HBase:HBase之上SQL的过去,现在和未来

【Hadoop Summit Tokyo 2016】使用基于Lambda架构的Spark的近实时的网络异常检测和流量分析

【Hadoop Summit Tokyo 2016】使Apache Zeppelin与Spark赋能企业数据科学

【Hadoop Summit Tokyo 2016】在Apache Hadoop上保护企业数据

【Hadoop Summit Tokyo 2016】使用Hadoop来构建实时和批数据的数据质量服务

【Hadoop Summit Tokyo 2016】使用Apache Ranger和Apache Atlas进行数据治理

【Hadoop Summit Tokyo 2016】领英:4亿会员的数据赋能之旅

【Hadoop Summit Tokyo 2016】企业已经对于云上Hadoop集群做好了准备

【Hadoop Summit Tokyo 2016】Apache Hadoop 3.0 :YARN和MapReduce有什么新特性?

【Hadoop Summit Tokyo 2016】构建信息平台:集成Hadoop与SAP HANA和HANA VORA

【Hadoop Summit Tokyo 2016】Hadoop Common与HDFS中有什么新特性?

【Hadoop Summit Tokyo 2016】LLAP:Hive上的次秒级分析查询

【Hadoop Summit Tokyo 2016】云上Hadoop——从专家的角度解释What、Why和How

【Hadoop Summit Tokyo 2016】Hadoop与云存储:在产品中集成对象存储

【Hadoop Summit Tokyo 2016】用于欺诈检测的深度学习

【Hadoop Summit Tokyo 2016】桌上的大数据与KNIME

【Hadoop Summit Tokyo 2016】Spark上可扩展的深度学习

【Hadoop Summit Tokyo 2016】基于Spark的高性能时空轨迹分析

【Hadoop Summit Tokyo 2016】当Spark邂逅智能电表

【Hadoop Summit Tokyo 2016】对于非文本的自然语言处理结构化数据调查

【Hadoop Summit Tokyo 2016】构建多租户平台

【Hadoop Summit Tokyo 2016】云上SQL-on-Hadoop的状态

【Hadoop Summit Tokyo 2016】Apache NiFi的先锋派

【Hadoop Summit Tokyo 2016】企业数据分类和治理

【Hadoop Summit Tokyo 2016】使用Amaterasu项目进行数据操作

【Hadoop Summit Tokyo 2016】现代化企业级数据仓库:数据湖泊

【Hadoop Summit Tokyo 2016】一个持续部署的Hadoop数据分析平台

【Hadoop Summit Tokyo 2016】文件格式的基准——Avro, JSON, ORC & Parquet

【Hadoop Summit Tokyo 2016】服务大众的Hadoop

【Hadoop Summit Tokyo 2016】以Apache Storm为例增强可靠性的流计算

【Hadoop Summit Tokyo 2016】云上的大象

【Hadoop Summit Tokyo 2016】欢迎来到Hadoop的青春时代

【Hadoop Summit Tokyo 2016】基于Apache Spark的数据科学

【Hadoop Summit Tokyo 2016】限制不断变化的多租户日志服务

【Hadoop Summit Tokyo 2016】追踪Hadoop与Storm资源与开销

【Hadoop Summit Tokyo 2016】数据流与Apache NiFi

【Hadoop Summit Tokyo 2016】基于成本的查询优化

【Hadoop Summit Tokyo 2016】一小时之内使用Apache Nifi从零到数据流

【Hadoop Summit Tokyo 2016】Columnar Era:利用Parquet,Arrow and Kudu获取高性能

【Hadoop Summit Tokyo 2016】Apache Storm中的资源感知调度

【Hadoop Summit Tokyo 2016】Apache Spark & Apache Zeppelin的安全状态

【Hadoop Summit Tokyo 2016】将HDFS演化成为广义存储子系统

【Hadoop Summit Tokyo 2016】像搭乐高一样搭建Storm与Spark Streaming Pipelines块

【Hadoop Summit Tokyo 2016】如何构建成功的数据湖泊

【Hadoop Summit Tokyo 2016】操纵云上基于Hadoop 集群的YARN

上一篇:直播系统源码抢占互联网市场很有“发言权”


下一篇:【Hadoop Summit Tokyo 2016】如何构建成功的数据湖泊