Given two integers dividend
and divisor
, divide two integers without using multiplication, division and mod operator.
Return the quotient after dividing dividend
by divisor
.
The integer division should truncate toward zero.
Example 1:
Input: dividend = 10, divisor = 3
Output: 3
Example 2:
Input: dividend = 7, divisor = -3
Output: -2
Note:
- Both dividend and divisor will be 32-bit signed integers.
- The divisor will never be 0.
- Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231, 231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows. 注意−231取绝对值后会溢出
class Solution {
public int divide(int dividend, int divisor) {
//handle overflow
int res = 0;
if(dividend==Integer.MIN_VALUE)
{
if(divisor==-1)
return Integer.MAX_VALUE;
res = 1;
dividend += Math.abs(divisor);
}
if(divisor==Integer.MIN_VALUE)
return res; //handle negative
Boolean isNeg = false;
if((dividend < 0 && divisor > 0) || (dividend > 0 && divisor < 0)) isNeg = true;
dividend = Math.abs(dividend);
divisor = Math.abs(divisor); int cnt = 0; //记录divisor左移的次数
//找到商的最高比特位
while(divisor <= (dividend >> 1)){ //除数与被除数/2相比,为了保证除<被除数,且防止溢出
divisor <<= 1;
cnt++;
} //从最高比特位开始求出商的每一位
while(cnt >= 0){
if(dividend >= divisor){ //dividend > divisor说明当前比特位为1,否则为0
dividend -= divisor;
res += 1 << cnt;
}
divisor >>= 1;
cnt--;
} return isNeg?-res:res;
}
}
通过二进制位移完成乘除,每次左移一位,相当于十进制中*2;每次右移一位,相当于十进制中/2
将除数位移至小于被除数的最大值,以获取商的最高位
之后除数每右移一位,求商的后一位。用被除数-除数,如果>=0,说明该二进制位的值位1,反之则为0