1.5 视觉智能实例:视觉诊断
第三个是视觉诊断,包括诊断人和诊断机器。诊断人比较好说,就是医疗图像分析,现在也是很热的题目。当然它比其他的方向慢了半拍,一方面由于数据收集的困难;另一方面是需要很强的专业知识。机器诊断是还没有开发的方向,它的问题有点像前面提到的异常检测的问题,有发生概率很低、正例样本很少,以及正例样本差异性大三个特点。举个例子,1万个样本,只有10个有问题是你要找出来的。但是你找不准那10个,只能说找出100个,那10个就在100个里面。这时你的召回率是100%,而准确率很低,只有10%。但是,这有没有用?我们算算省了多少人力,省了99%,因为你只需要看100个就行了。哪怕只有1%的准确率,只要召回率足够,也省了90%的人力。所以这类问题的目标不一样,衡量的标准也是不一样的,省人力是非常重要的指标。其实这里面涉及到各行各业的视觉问题,凡是过去需要人眼来看的,是不是都可以用视觉的方法来解决。从这个角度来讲,就是遍地黄金,很多地方都可以挖到黄金,不见得出来一个视觉创业公司就一定要去做人脸识别。