SLS全栈监控数据分析


本文通过展示主机监控, 数据库监控, 应用监控帮助用户完成从基础设施到业务层面的监控, 我们在每个示例中使用不同的数据采集和可视化实现方式, 帮助用户全面了解SLS提供的时序监控能力

监控层次

在我们实施监控时, 服务端监控至少包含以下部分:


SLS全栈监控数据分析



基础设施&网络在云时代绝大多数用户已经不再需要关心, 因此我们主要关心操作系统/数据库&中间件以及应用&业务的监控
SLS拥抱开源, 可以借助成熟的监控软件提供的能力, 如Prometheus, telegraf, Grafana等, 构建灵活的解决方案.
SLS全栈监控数据分析

灵活的数据收集方案

例如Prometheus支持众多Exporter, 并且是kubernetes标配, 那么我们可以选择用Prometheus exporter暴露数据, 用Prometheus进行采集, 通过remote write协议写入Metric Store(参见文档: 采集Prometheus监控数据_数据接入_时序存储_日志服务-阿里云), 下文将以Java应用监控为例展示该用法
telegraf同样支持众多采集插件, 因此也可以选择用telegraf进行采集, 并通过influxdb的协议写入Metric Store, 下文将以MySQL监控为例展示该用法
同时SLS的logtail本身也有采集能力, 因此也可以使用logtail进行采集, 例如我们提供的主机监控: 采集主机监控数据_数据接入_时序存储_日志服务-阿里云

查询基础

在展示具体例子之前, 我们先学习一点查询语法作为基础
SLS Metric Store支持使用SQL + PromQL进行查询, 使用方法为使用PromQL函数进行查询, 然后可将该查询作为子查询嵌套完整SQL语法:

SELECT 
    promql_query_range('up', '1m') 
FROM metrics;
SELECT 
    sum(value) 
FROM 
    (SELECT promql_query_range('up', '1m') 
    FROM metrics);

其中promql_query_range的第一个参数就是PromQL, 第二个参数为step, 即时间粒度 在MetricStore查询页面中, 可在Metrics下拉框中选择指标, 会自动生成最简单的查询, 点击预览即可看到图表: SLS全栈监控数据分析

PromQL语法入门

SLS全栈监控数据分析

例子:

avg(go_gc_duration_seconds{endpoint = “http-metrics”}) by (instance)

完整PromQL语法可查看Prometheus官方文档: https://prometheus.io/docs/prometheus/latest/querying/basics/
SLS支持Prometheus中主要的几个函数, 完整列表见: 时序数据查询分析简介_查询与分析_时序存储_日志服务-阿里云 
单是看语法说明难免有些枯燥, 下面我们就进入实战环节!

主机监控

主机监控我们采用logtail收集操作系统指标, 直接写入Metric Store, 同时我们提供了内置的dashboard做可视化, 它的数据流如下:
 SLS全栈监控数据分析

操作步骤

新建logtail配置: 
SLS全栈监控数据分析

选择主机监控 
SLS全栈监控数据分析

选择机器组
SLS全栈监控数据分析

确认插件配置 
SLS全栈监控数据分析

 IntervalMs代表采集间隔, 默认30s, 可保持默认点击下一步即可完成
创建完成后即可在左边dashboard列表中找到主机监控 
SLS全栈监控数据分析

稍等1-2分钟即可看到数据产生
 SLS全栈监控数据分析

数据库监控

数据库监控采用telegraf进行采集, 并通过logtail支持的http receiver插件传输数据, logtail将把数据写入metric store 
SLS全栈监控数据分析

telegraf写入logtail走influxdb协议, 因此在telegraf中按照influxdb配置即可
首先我们先创建一个logtail配置, 用于接收telegraf的数据, 新建logtail配置, 选择自定义数据插件
SLS全栈监控数据分析

选择机器组(参照主机监控中的步骤) 输入配置名称, 并粘贴以下内容:

{
    "inputs": [
        {
            "detail": {
                "Format": "influx",
                "Address": ":8476"
            },
            "type": "service_http_server"
        }
    ],
    "global": {
        "AlwaysOnline": true,
        "DelayStopSec": 500
    }
}


SLS全栈监控数据分析

点击下一步即可完成 接着我们开始配置telegraf 修改telegraf.conf, 默认在_etc_telegraf/telegraf.conf, 建议备份原文件, 新建并粘贴以下内容:

# Global tags can be specified here in key="value" format.
[global_tags]
  # dc = "us-east-1" # will tag all metrics with dc=us-east-1
  # rack = "1a"
  ## Environment variables can be used as tags, and throughout the config file
  # user = "$USER"
# Configuration for telegraf agent
[agent]
  ## Default data collection interval for all inputs
  interval = "10s"
  ## Rounds collection interval to 'interval'
  ## ie, if interval="10s" then always collect on :00, :10, :20, etc.
  round_interval = true
  ## Telegraf will send metrics to outputs in batches of at most
  ## metric_batch_size metrics.
  ## This controls the size of writes that Telegraf sends to output plugins.
  metric_batch_size = 1000
  ## Maximum number of unwritten metrics per output.  Increasing this value
  ## allows for longer periods of output downtime without dropping metrics at the
  ## cost of higher maximum memory usage.
  metric_buffer_limit = 10000
  ## Collection jitter is used to jitter the collection by a random amount.
  ## Each plugin will sleep for a random time within jitter before collecting.
  ## This can be used to avoid many plugins querying things like sysfs at the
  ## same time, which can have a measurable effect on the system.
  collection_jitter = "0s"
  ## Default flushing interval for all outputs. Maximum flush_interval will be
  ## flush_interval + flush_jitter
  flush_interval = "10s"
  ## Jitter the flush interval by a random amount. This is primarily to avoid
  ## large write spikes for users running a large number of telegraf instances.
  ## ie, a jitter of 5s and interval 10s means flushes will happen every 10-15s
  flush_jitter = "0s"
  ## By default or when set to "0s", precision will be set to the same
  ## timestamp order as the collection interval, with the maximum being 1s.
  ##   ie, when interval = "10s", precision will be "1s"
  ##       when interval = "250ms", precision will be "1ms"
  ## Precision will NOT be used for service inputs. It is up to each individual
  ## service input to set the timestamp at the appropriate precision.
  ## Valid time units are "ns", "us" (or "µs"), "ms", "s".
  precision = ""
  ## Maximum number of rotated archives to keep, any older logs are deleted.
  ## If set to -1, no archives are removed.
  # logfile_rotation_max_archives = 5
  ## Override default hostname, if empty use os.Hostname()
  hostname = ""
  ## If set to true, do no set the "host" tag in the telegraf agent.
  omit_hostname = false
      
###############################################################################
#                            OUTPUT PLUGINS                                   #
###############################################################################
# Configuration for sending metrics to Logtail's InfluxDB receiver
[[outputs.influxdb]]
  ## The full HTTP Logtail listen address
  urls = ["http://127.0.0.1:8476"]
  ## Always be true
  skip_database_creation = true

再在telegraf.d目录中新建mysql.conf文件, 粘贴以下内容:

[[inputs.mysql]]
  ## specify servers via a url matching:
  ##  [username[:password]@][protocol[(address)]]/[?tls=[true|false|skip-verify|custom]]
  ##  see https://github.com/go-sql-driver/mysql#dsn-data-source-name
  ##  e.g.
  ##    servers = ["user:passwd@tcp(127.0.0.1:3306)/?tls=false"]
  ##    servers = ["user@tcp(127.0.0.1:3306)/?tls=false"]
  #
  ## If no servers are specified, then localhost is used as the host.
  servers = ["user:passwd@tcp(127.0.0.1:3306)/?tls=false"]
  metric_version = 2
  ## if the list is empty, then metrics are gathered from all databasee tables
  table_schema_databases = []
  ## gather metrics from INFORMATION_SCHEMA.TABLES for databases provided above list
  gather_table_schema = false
  ## gather thread state counts from INFORMATION_SCHEMA.PROCESSLIST
  gather_process_list = false
  ## gather user statistics from INFORMATION_SCHEMA.USER_STATISTICS
  gather_user_statistics = false
  ## gather auto_increment columns and max values from information schema
  gather_info_schema_auto_inc = false
  ## gather metrics from INFORMATION_SCHEMA.INNODB_METRICS
  gather_innodb_metrics = true
  ## gather metrics from SHOW SLAVE STATUS command output
  gather_slave_status = false
  ## gather metrics from SHOW BINARY LOGS command output
  gather_binary_logs = false
  ## gather metrics from SHOW GLOBAL VARIABLES command output
  gather_global_variables = true
  ## gather metrics from PERFORMANCE_SCHEMA.TABLE_IO_WAITS_SUMMARY_BY_TABLE
  gather_table_io_waits = false
  ## gather metrics from PERFORMANCE_SCHEMA.TABLE_LOCK_WAITS
  gather_table_lock_waits = false
  ## gather metrics from PERFORMANCE_SCHEMA.TABLE_IO_WAITS_SUMMARY_BY_INDEX_USAGE
  gather_index_io_waits = false
  ## gather metrics from PERFORMANCE_SCHEMA.EVENT_WAITS
  gather_event_waits = false
  ## gather metrics from PERFORMANCE_SCHEMA.FILE_SUMMARY_BY_EVENT_NAME
  gather_file_events_stats = false
  ## gather metrics from PERFORMANCE_SCHEMA.EVENTS_STATEMENTS_SUMMARY_BY_DIGEST
  gather_perf_events_statements = false
  ## the limits for metrics form perf_events_statements
  perf_events_statements_digest_text_limit = 120
  perf_events_statements_limit = 250
  perf_events_statements_time_limit = 86400
  ## Some queries we may want to run less often (such as SHOW GLOBAL VARIABLES)
  ##   example: interval_slow = "30m"
  interval_slow = ""
  ## Optional TLS Config (will be used if tls=custom parameter specified in server uri)
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false omit_hostname = false
[[processors.strings]]
  namepass = ["mysql", "mysql_innodb"]
  [[processors.strings.replace]]
    tag = "server"
    old = "127.0.0.1:3306"
    new = "mysql-dev"
  [[processors.strings.replace]]
    tag = "server"
    old = "192.168.1.98:3306"
    new = "mysql-prod"

注意修改servers字段为对应的MySQL连接串 重启telegraf即可:

sudo service telegraf reload
# 或者
sudo systemctl reload telegraf

稍等1-2分钟刷新页面, 选择Metrics, 即可看到数据, MySQL监控暂时未提供预置dashboard, 可自行配置, 后续SLS将对常用数据库和中间件提供默认dashboard模板

应用监控

应用监控中我们以Spring Boot应用为例, 使用Spring Boot Actuator暴露数据, 通过Prometheus采集, 并使用remote write 协议写入Metric Store, 再使用Grafana对接做可视化, 整个数据流如下: 
SLS全栈监控数据分析

首先我们需要引入两个依赖:

<dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
<dependency>
    <groupId>io.micrometer</groupId>
    <artifactId>micrometer-registry-prometheus</artifactId>
    <version>1.1.3</version>
</dependency>


接着修改spring boot配置, 默认在resources/application.yml, 没有的话请创建:

server:
  port: 8080
spring:
  application:
    name: spring-demo # 修改成您的应用名
management:
  endpoints:
    web:
      exposure:
        include: 'prometheus' # 暴露/actuator/prometheus
  metrics:
    tags:
      application: ${spring.application.name} # 暴露的数据中添加application label

启动应用, 访问http://localhost:8080/actuator/prometheus, 应该看到如下数据:

# HELP jvm_memory_committed_bytes The amount of memory in bytes that is committed for the Java virtual machine to use
# TYPE jvm_memory_committed_bytes gauge
jvm_memory_committed_bytes{application="spring-demo",area="heap",id="PS Eden Space",} 1.77733632E8
jvm_memory_committed_bytes{application="spring-demo",area="nonheap",id="Metaspace",} 3.6880384E7
jvm_memory_committed_bytes{application="spring-demo",area="heap",id="PS Old Gen",} 1.53092096E8
jvm_memory_committed_bytes{application="spring-demo",area="heap",id="PS Survivor Space",} 1.4680064E7
jvm_memory_committed_bytes{application="spring-demo",area="nonheap",id="Compressed Class Space",} 5160960.0
jvm_memory_committed_bytes{application="spring-demo",area="nonheap",id="Code Cache",} 7798784.0
# HELP jvm_classes_unloaded_classes_total The total number of classes unloaded since the Java virtual machine has started execution
# TYPE jvm_classes_unloaded_classes_total counter
jvm_classes_unloaded_classes_total{application="spring-demo",} 0.0
# HELP jvm_memory_max_bytes The maximum amount of memory in bytes that can be used for memory management
jvm_memory_max_bytes{application="spring-demo",area="nonheap",id="Code Cache",} 2.5165824E8
# HELP jvm_classes_loaded_classes The number of classes that are currently loaded in the Java virtual machine
# TYPE jvm_classes_loaded_classes gauge
jvm_classes_loaded_classes{application="spring-demo",} 7010.0
# HELP jvm_threads_daemon_threads The current number of live daemon threads
# TYPE jvm_threads_daemon_threads gauge
jvm_threads_daemon_threads{application="spring-demo",} 24.0
# HELP jvm_threads_states_threads The current number of threads having NEW state
# 太长, 后面省略


现在数据已经暴露出来了, 我们需要配置Prometheus进行采集, 修改Prometheus的配置文件:

global:
  scrape_interval: 15s
scrape_configs:
  - job_name: "spring-demo"
    metrics_path: "/actuator/prometheus"
    static_configs:
    - targets: ["localhost:8080"]
remote_write:
  - url: "https://cn-zhangjiakou-share.log.aliyuncs.com/prometheus/sls-metric-store-test-cn-zhangjiakou/test-logstore-1/api/v1/write"
  # - url: "https://sls-zc-test-bj-b.cn-beijing-share.log.aliyuncs.com/prometheus/sls-zc-test-bj-b/prometheus-spring/api/v1/write"
    basic_auth:
      username: ${accessKeyId}
      password: ${accessKeySecret}
    # Configures the queue used to write to remote storage.
    queue_config:
      max_samples_per_send: 2048
      batch_send_deadline: 20s
      min_backoff: 100ms
      max_backoff: 5s
      # max_retries: 10

其中scrape_configs是用来采集我们的应用数据的, remote_write部分用于将数据写入Metric Store, 注意替换basic_auth中的username和password为您对应的accessKeyId和accessKeySecret 配置完成后重启Prometheus, 可访问http://${prometheus_域名}/graph选择metric查看是否采集成功 接着我们要配置grafana进行可视化 首先要把我们的Metric Store接入到Grafana的数据源中: 
SLS全栈监控数据分析

数据源接入成功后, 就可以配置dashbaord了, 我们已经在grafana.com上传了模板: SLS JVM监控大盘(via MicroMeter) dashboard for Grafana | Grafana Labs 直接在grafana中导入即可: 做侧边栏选择+  Import  粘贴url: https://grafana.com/grafana/dashboards/12856 选择上一步创建的数据源 点击Load 这样就配置完成了, 我们完整的dashboard是这样的:
 SLS全栈监控数据分析

总结

我们首先介绍了SLS时序数据的查询方式, 接着我们通过主机监控, MySQL监控, Spring Boot应用监控三种监控类型向大家分别展示了多种不同的数据接入, 可视化方法, 大家可以根据自身的环境选择最容易使用的方式进行接入, 当数据都存储在SLS上以后, 就可以使用SLS提供的SQL语法, PromQL语法对数据进行分析挖掘, 祝大家使用愉快! 如有任何问题, 可提工单, 或在用户群中反馈(见下放钉钉二维码), 也欢迎关注我们的微信公众号, 会推送实用的使用技巧和最佳实践哦~ 
SLS全栈监控数据分析

上一篇:Python 知识点总结篇(1)


下一篇:VSTO之旅系列(二):创建Excel解决方案