https://blog.csdn.net/zhishiqu/article/details/79077883
这是威尔逊Muktar关于整合Three.js与铯的客人帖子。Three.js是一个轻量级的跨浏览器JavaScript库,用于在浏览器中创建和显示动画3D计算机图形。将Cesium的行星级渲染和GIS功能与Three.js广泛而易用的通用3D API相结合,为新的WebGL体验开启了许多可能性。你可以在这里查看这个演示的实时版本和代码本身。 - 加里
3D JavaScript库现在已经完全成熟并且广为人知,使得开发人员可以避免在浏览器中使用3D的麻烦。开发人员可以轻松创建相机,对象,灯光,材质和图形,并选择渲染器,使用HTML 5的画布,WebGL或SVG绘制场景。
因为Cesium和Three.js都是用于3D可视化的,并且是从头开始用JavaScript构建的,所以它们有相似之处,可以将这些惊人的库集成在一起。我对这两个框架进行整合的方法比看起来简单:我将这两个框架分离到了不同的视图中,并参考了HTML Canvas元素,并将它们的控制器组合在同一个坐标系中。由于两者都是开源的,我可以分享这个演示,这将涵盖一些基础知识。
左:铯现场。中心:Three.js场景。右:组合的场景。
铯是一个为了创建数字地球而开发的三维图书馆,其渲染对于真实的地球来说是非常精确的。借助3D Tiles,开发人员可以将几乎所有内容都重新渲染到浏览器中的数字画布上。
指导铯的基本渲染原理与Three.js没有太大区别。Three.js是用于渲染3D对象的强大3D库。通过在两个场景中复制铯的球面坐标系和匹配的数字地球,很容易将两个单独的渲染引擎层整合到一个主场景中。我将给出一个关于其整合方法的简单说明,如下所示:
- 初始化Cesium渲染器,
- 初始化Three.js渲染器,
- 初始化这两个库的3D对象,和
- 循环渲染器。
主功能
该html需要三个容器和铯:
- <body>
- <div id="cesiumContainer"></div>
- <div id="ThreeContainer"></div>
- </body>
- <script> main(); </script>
这是主要功能:
- function main(){
- // boundaries in WGS84 to help with syncing the renderers
- var minWGS84 = [115.23,39.55];
- var maxWGS84 = [116.23,41.55];
- var cesiumContainer = document.getElementById("cesiumContainer");
- var ThreeContainer = document.getElementById("ThreeContainer");
- var _3Dobjects = []; //Could be any Three.js object mesh
- var three = {
- renderer: null,
- camera: null,
- scene: null
- };
- var cesium = {
- viewer: null
- };
- initCesium(); // Initialize Cesium renderer
- initThree(); // Initialize Three.js renderer
- init3DObject(); // Initialize Three.js object mesh with Cesium Cartesian coordinate system
- loop(); // Looping renderer
- }
初始化铯渲染器
首先,我们可以通过添加自定义图像或默认提供的其他部分来自定义铯查看器。通过禁用Cesium的默认渲染循环,我们可以将其动画帧与Three.js同步。
- function initCesium(){
- cesium.viewer = new Cesium.Viewer(cesiumContainer,{
- useDefaultRenderLoop: false,
- selectionIndicator : false,
- homeButton:false,
- sceneModePicker:false,
- navigationHelpButton:false,
- infoBox : false,
- navigationHelpButton:false,
- navigationInstructionsInitiallyVisible:false,
- animation : false,
- timeline : false,
- fullscreenButton : false,
- allowTextureFilterAnisotropic:false,
- contextOptions:{
- webgl: {
- alpha: false,
- antialias: true,
- preserveDrawingBuffer : true,
- failIfMajorPerformanceCaveat: false,
- depth:true,
- stencil:false,
- anialias:false
- },
- },
- targetFrameRate:60,
- resolutionScale:0.1,
- orderIndependentTranslucency : true,
- creditContainer : "hidecredit",
- imageryProvider : new Cesium.createTileMapServiceImageryProvider({
- url: 'Assets/imagery/NaturalEarthII/',
- maximumLevel : 5
- }),
- baseLayerPicker : false,
- geocoder : false,
- automaticallyTrackDataSourceClocks: false,
- dataSources: null,
- clock: null,
- terrainShadows: Cesium.ShadowMode.DISABLED
- });
- var center = Cesium.Cartesian3.fromDegrees(
- (minWGS84[0] + maxWGS84[0]) / 2,
- ((minWGS84[1] + maxWGS84[1]) / 2)-1,
- 200000
- );
- cesium.viewer.camera.flyTo({
- destination : center,
- orientation : {
- heading : Cesium.Math.toRadians(0),
- pitch : Cesium.Math.toRadians(-60),
- roll : Cesium.Math.toRadians(0)
- },
- duration: 3
- });
- }
初始化Three.js渲染器
接下来我们简单地初始化Three.js强制阶段,包括场景,相机,渲染器和DOM元素。
- function initThree(){
- var fov = 45;
- var width = window.innerWidth;
- var height = window.innerHeight;
- var aspect = width / height;
- var near = 1;
- var far = 10*1000*1000; // needs to be far to support Cesium's world-scale rendering
- three.scene = new THREE.Scene();
- three.camera = new THREE.PerspectiveCamera(fov, aspect, near, far);
- three.renderer = new THREE.WebGLRenderer({alpha: true});
- ThreeContainer.appendChild(three.renderer.domElement);
- }
在两个库中初始化3D对象
使用实体对象可以简单地将Cesium对象添加到其查看器中; 例如,可以使用3D图形类来渲染在Three.js中创建的3D绘图对象网格,或者使用Three.js创建的任何其他3D对象。所有这些都保存在一个_3DObjects
进一步处理,其中包含用于同步相机的额外信息。这里我们将渲染一个[Lathe geometry]和一个[dodecahedron]。请注意,Three.js呈现z-up,而Cesium呈现y-up。
- function init3DObject(){
- //Cesium entity
- var entity = {
- name : 'Polygon',
- polygon : {
- hierarchy : Cesium.Cartesian3.fromDegreesArray([
- minWGS84[0], minWGS84[1],
- maxWGS84[0], minWGS84[1],
- maxWGS84[0], maxWGS84[1],
- minWGS84[0], maxWGS84[1],
- ]),
- material : Cesium.Color.RED.withAlpha(0.2)
- }
- };
- var Polygon = cesium.viewer.entities.add(entity);
- // Lathe geometry
- var doubleSideMaterial = new THREE.MeshNormalMaterial({
- side: THREE.DoubleSide
- });
- var segments = 10;
- var points = [];
- for ( var i = 0; i < segments; i ++ ) {
- points.push( new THREE.Vector2( Math.sin( i * 0.2 ) * segments + 5, ( i - 5 ) * 2 ) );
- }
- var geometry = new THREE.LatheGeometry( points );
- var latheMesh = new THREE.Mesh( geometry, doubleSideMaterial ) ;
- latheMesh.scale.set(1500,1500,1500); //scale object to be visible at planet scale
- latheMesh.position.z += 15000.0; // translate "up" in Three.js space so the "bottom" of the mesh is the handle
- latheMesh.rotation.x = Math.PI / 2; // rotate mesh for Cesium's Y-up system
- var latheMeshYup = new THREE.Group();
- latheMeshYup.add(latheMesh)
- three.scene.add(latheMeshYup); // don’t forget to add it to the Three.js scene manually
- //Assign Three.js object mesh to our object array
- var _3DOB = new _3DObject();
- _3DOB.threeMesh = latheMeshYup;
- _3DOB.minWGS84 = minWGS84;
- _3DOB.maxWGS84 = maxWGS84;
- _3Dobjects.push(_3DOB);
- // dodecahedron
- geometry = new THREE.DodecahedronGeometry();
- var dodecahedronMesh = new THREE.Mesh(geometry, new THREE.MeshNormalMaterial()) ;
- dodecahedronMesh.scale.set(5000,5000,5000); //scale object to be visible at planet scale
- dodecahedronMesh.position.z += 15000.0; // translate "up" in Three.js space so the "bottom" of the mesh is the handle
- dodecahedronMesh.rotation.x = Math.PI / 2; // rotate mesh for Cesium's Y-up system
- var dodecahedronMeshYup = new THREE.Group();
- dodecahedronMeshYup.add(dodecahedronMesh)
- three.scene.add(dodecahedronMeshYup); // don’t forget to add it to the Three.js scene manually
- //Assign Three.js object mesh to our object array
- _3DOB = new _3DObject();
- _3DOB.threeMesh = dodecahedronMeshYup;
- _3DOB.minWGS84 = minWGS84;
- _3DOB.maxWGS84 = maxWGS84;
- _3Dobjects.push(_3DOB);
- }
- function _3DObject(){
- this.graphMesh = null; //Three.js 3DObject.mesh
- this.minWGS84 = null; //location bounding box
- this.maxWGS84 = null;
- }
循环渲染器
- function loop(){
- requestAnimationFrame(loop);
- renderCesium();
- renderThreeObj();
- }
- function renderCesium(){
- cesium.viewer.render();
- }
我们将克隆Three.js摄像头以匹配Cesium摄像头,因此不需要为Three.js分配鼠标控制器,但是由于Three.js DOM元素在Cesium之上,我们仍然需要将其删除。我们通过向pointer-events:none
Three.js渲染器添加CSS属性来删除它。现在一切都会根据铯的相机投影来渲染。
还有一个坐标转换要做,使对象在地球上正确显示。这包括将大地纬度/经度位置转换为笛卡儿XYZ,并使用WGS84区域从左下角到左上角的方向作为向上矢量,使物体指向地球中心。这也可以通过使用本地笛卡尔东北向或东北向下来计算。
- function renderThreeObj(){
- // register Three.js scene with Cesium
- three.camera.fov = Cesium.Math.toDegrees(cesium.viewer.camera.frustum.fovy) // ThreeJS FOV is vertical
- three.camera.updateProjectionMatrix();
- var cartToVec = function(cart){
- return new THREE.Vector3(cart.x, cart.y, cart.z);
- };
- // Configure Three.js meshes to stand against globe center position up direction
- for(id in _3Dobjects){
- minWGS84 = _3Dobjects[id].minWGS84;
- maxWGS84 = _3Dobjects[id].maxWGS84;
- // convert lat/long center position to Cartesian3
- var center = Cesium.Cartesian3.fromDegrees((minWGS84[0] + maxWGS84[0]) / 2, (minWGS84[1] + maxWGS84[1]) / 2);
- // get forward direction for orienting model
- var centerHigh = Cesium.Cartesian3.fromDegrees((minWGS84[0] + maxWGS84[0]) / 2, (minWGS84[1] + maxWGS84[1]) / 2,1);
- // use direction from bottom left to top left as up-vector
- var bottomLeft = cartToVec(Cesium.Cartesian3.fromDegrees(minWGS84[0], minWGS84[1]));
- var topLeft = cartToVec(Cesium.Cartesian3.fromDegrees(minWGS84[0], maxWGS84[1]));
- var latDir = new THREE.Vector3().subVectors(bottomLeft,topLeft ).normalize();
- // configure entity position and orientation
- _3Dobjects[id].graphMesh.position.copy(center);
- _3Dobjects[id].graphMesh.lookAt(centerHigh);
- _3Dobjects[id].graphMesh.up.copy(latDir);
- }
- // Clone Cesium Camera projection position so the
- // Three.js Object will appear to be at the same place as above the Cesium Globe
- three.camera.matrixAutoUpdate = false;
- var cvm = cesium.viewer.camera.viewMatrix;
- var civm = cesium.viewer.camera.inverseViewMatrix;
- three.camera.matrixWorld.set(
- civm[0], civm[4], civm[8 ], civm[12],
- civm[1], civm[5], civm[9 ], civm[13],
- civm[2], civm[6], civm[10], civm[14],
- civm[3], civm[7], civm[11], civm[15]
- );
- three.camera.matrixWorldInverse.set(
- cvm[0], cvm[4], cvm[8 ], cvm[12],
- cvm[1], cvm[5], cvm[9 ], cvm[13],
- cvm[2], cvm[6], cvm[10], cvm[14],
- cvm[3], cvm[7], cvm[11], cvm[15]
- );
- three.camera.lookAt(new THREE.Vector3(0,0,0));
- var width = ThreeContainer.clientWidth;
- var height = ThreeContainer.clientHeight;
- var aspect = width / height;
- three.camera.aspect = aspect;
- three.camera.updateProjectionMatrix();
- three.renderer.setSize(width, height);
- three.renderer.render(three.scene, three.camera);
- }