Kafka消息delivery可靠性保证(Message Delivery Semantics)

原文见:http://kafka.apache.org/documentation.html#semantics

kafka在生产者和消费者之间的传输是如何保证的,我们可以知道有这么几种可能提供的delivery guarantee:

  • At most once 消息可能会丢,但绝不会重复传输
  • At least one 消息绝不会丢,但可能会重复传输
  • Exactly once 每条消息肯定会被传输一次且仅传输一次,很多时候这是用户所想要的。  

  值得注意的是,当Producer向broker发送消息时,一旦这条消息被commit,因数replication的存在,它就不会丢。但是如果Producer发送数据给broker后,遇到网络问题而造成通信中断,那Producer就无法判断该条消息是否已经commit。虽然Kafka无法确定网络故障期间发生了什么,但是Producer可以生成一种类似于主键的东西,发生故障时幂等性的重试多次,这样就做到了Exactly once。目前这一Feature还并未实现,有希望在Kafka未来的版本中实现。(所以目前默认情况下一条消息从Producer到broker是确保了At least once,可通过设置Producer异步发送实现At most once)。


  接下来讨论的是消息从broker到Consumer的delivery guarantee语义。(仅针对Kafka consumer high level API)。Consumer在从broker读取消息后,可以选择commit,该操作会在Zookeeper中保存该Consumer在该Partition中读取的消息的offset。该Consumer下一次再读该Partition时会从下一条开始读取。如未commit,下一次读取的开始位置会跟上一次commit之后的开始位置相同。当然可以将Consumer设置为autocommit,即Consumer一旦读到数据立即自动commit。如果只讨论这一读取消息的过程,那Kafka是确保了Exactly once。但实际使用中应用程序并非在Consumer读取完数据就结束了,而是要进行进一步处理,而数据处理与commit的顺序在很大程度上决定了消息从broker和consumer的消息投递语义保证。
  • 读完消息先commit消费状态(保存offset)再处理消息。这种模式下,如果Consumer在commit后还没来得及处理消息就crash了,下次重新开始工作后就无法读到刚刚已提交而未处理的消息,这对应at-most-once
  • 读完消息先处理再commit消费状态(保存offset)。这种模式下,如果在处理完消息之后commit之前Consumer crash了,下次重新开始工作时还会处理刚刚未commit的消息,实际上该消息已经被处理过了。这对应at-least-once
  • 如果一定要做到exactly once,就需要协调offset和实际操作的输出。经典的做法是引入两阶段提交,如果能让offset和操作输入存到同一个地方,会更简洁和通用。这种方式可能更好,因为许多输出系统可能不支持两阶段提交。比如,Consumer拿到数据后可能把数据放到HDFS,如果把最新的offset和数据本身一起写到HDFS,那就可以保证数据的输出和offset的更新要么都完成,要么都不完成,间接实现Exactly once。目前就high level api而言,offset是存于Zookeeper中的,无法存于HDFS,而low level API的offset是由自己去维护的,可以将之存于HDFS中.

  

Kafka默认保证At least once,并且允许通过设置Producer异步提交来实现At most once。而Exactly once要求与外部存储系统协作,幸运的是Kafka提供的offset可以非常直接非常容易得使用这种方式。


参考:

http://kafka.apache.org/documentation.html#semantics

上一篇:全球*创投布局中国SDN市场,云杉网络完成千万美元B轮融资


下一篇:[Java 安全]消息摘要与数字签名