Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的

 AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中。AlexNet主要使用到的新技术点如下。

(1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题。虽然ReLU激活函数在很久之前就被提出了,但是直到AlexNet的出现才将其发扬光大。

(2)训练时使用Dropout随机忽略一部分神经元,以避免模型过拟合。Dropout虽有单独的论文论述,但是AlexNet将其实用化,通过实践证实了它的效果。在AlexNet中主要是最后几个全连接层使用了Dropout。

(3)在CNN中使用重叠的最大池化。此前CNN中普遍使用平均池化,AlexNet全部使用最大池化,避免平均池化的模糊化效果。并且AlexNet中提出让步长比池化核的尺寸小,这样池化层的输出之间会有重叠和覆盖,提升了特征的丰富性。

(4)提出了LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力

 

LRN(Local Response Normalization)

 


ImageNet中的LRN层是按下述公式计算的:

Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的

 

但似乎,在后来的设计中,这一层已经被其它种的Regularization技术,如drop out, batch normalization取代了。知道了这些,似乎也可以不那么纠结这个LRN了

转自:http://blog.csdn.net/searobbers_duck/article/details/51645941

 

感觉LRN也是解决的梯度消失和爆炸问题。

 

 

BN本质上解决的是反向传播过程中的梯度问题。

详细点说,反向传播时经过该层的梯度是要乘以该层的参数的,即前向有:

Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的

那么反向传播时便有:

Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的

那么考虑从l层传到k层的情况,有:

Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的

上面这个 Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的 便是问题所在。因为网络层很深,如果 Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的 大多小于1,那么传到这里的时候梯度会变得很小比如 Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的 ;而如果 Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的 又大多大于1,那么传到这里的时候又会有梯度爆炸问题 比如Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的 。

BN所做的就是解决这个梯度传播的问题,因为BN作用抹去了w的scale影响。

具体有:

Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的(Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的) = Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的(Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的)

那么反向求导时便有了:

Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的

可以看到此时反向传播乘以的数不再和 Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的 的尺度相关,也就是说尽管我们在更新过程中改变了 Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的 的值,但是反向传播的梯度却不受影响。更进一步:

Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的

即尺度较大的 Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的 将获得一个较小的梯度,在同等的学习速率下其获得的更新更少,这样使得整体 Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的 的更新更加稳健起来。

总结起来就是BN解决了反向传播过程中的梯度问题(梯度消失和爆炸),同时使得不同scale的 Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的 整体更新步调更一致。



链接:https://www.zhihu.com/question/38102762/answer/164790133

 



为什么要用BN?BN work的原因是什么?
说到底,BN的提出还是为了克服深度神经网络难以训练的弊病。其实BN背后的insight非常简单,只是在文章中被Google复杂化了。
首先来说说“Internal Covariate Shift”。文章的title除了BN这样一个关键词,还有一个便是“ICS”。大家都知道在统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的”。如果不一致,那么就出现了新的机器学习问题,如,transfer learning/domain adaptation等。而covariate shift就是分布不一致假设之下的一个分支问题,它是指源空间和目标空间的条件概率是一致的,但是其边缘概率不同,即:对所有Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的,Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的,但是Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的. 大家细想便会发现,的确,对于神经网络的各层输出,由于它们经过了层内操作作用,其分布显然与各层对应的输入信号分布不同,而且差异会随着网络深度增大而增大,可是它们所能“指示”的样本标记(label)仍然是不变的,这便符合了covariate shift的定义。由于是对层间信号的分析,也即是“internal”的来由。
那么好,为什么前面我说Google将其复杂化了。其实如果严格按照解决covariate shift的路子来做的话,大概就是上“importance weight”(ref)之类的机器学习方法。可是这里Google仅仅说“通过mini-batch来规范化某些层/所有层的输入,从而可以固定每层输入信号的均值与方差”就可以解决问题。如果covariate shift可以用这么简单的方法解决,那前人对其的研究也真真是白做了。此外,试想,均值方差一致的分布就是同样的分布吗?当然不是。显然,ICS只是这个问题的“包装纸”嘛,仅仅是一种high-level demonstration。
那BN到底是什么原理呢?说到底还是为了防止“梯度弥散”。关于梯度弥散,大家都知道一个简单的栗子:Local Response Normalization作用——感觉LRN也是解决的梯度消失和爆炸问题,统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的。在BN中,是通过将activation规范为均值和方差一致的手段使得原本会减小的activation的scale变大。可以说是一种更有效的local response normalization方法(见4.2.1节)。
 
链接:https://www.zhihu.com/question/38102762/answer/85238569






















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/8268459.html,如需转载请自行联系原作者

上一篇:21天实战人工智能系列:人工智能产品经理最佳实践(2)


下一篇:VM环境下Linux虚拟机扩展存储空间操作方法总结