输出结果
Id MSSubClass MSZoning ... SaleType SaleCondition SalePrice
0 1 60 RL ... WD Normal 208500
1 2 20 RL ... WD Normal 181500
2 3 60 RL ... WD Normal 223500
3 4 70 RL ... WD Abnorml 140000
4 5 60 RL ... WD Normal 250000
[5 rows x 81 columns]
numeric_columns 36 ['LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal', 'MoSold', 'YrSold', 'SalePrice']
(1460, 36)
LotFrontage LotArea OverallQual ... MoSold YrSold SalePrice
0 65.0 8450 7 ... 2 2008 208500
1 80.0 9600 6 ... 5 2007 181500
2 68.0 11250 7 ... 9 2008 223500
3 60.0 9550 7 ... 2 2006 140000
4 84.0 14260 8 ... 12 2008 250000
依次统计每列缺失值元素个数:
36 [259, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Missing_data_Per_dict_0: (33, 0.9167, {'LotArea': 0.0, 'OverallQual': 0.0, 'OverallCond': 0.0, 'YearBuilt': 0.0, 'YearRemodAdd': 0.0, 'BsmtFinSF1': 0.0, 'BsmtFinSF2': 0.0, 'BsmtUnfSF': 0.0, 'TotalBsmtSF': 0.0, '1stFlrSF': 0.0, '2ndFlrSF': 0.0, 'LowQualFinSF': 0.0, 'GrLivArea': 0.0, 'BsmtFullBath': 0.0, 'BsmtHalfBath': 0.0, 'FullBath': 0.0, 'HalfBath': 0.0, 'BedroomAbvGr': 0.0, 'KitchenAbvGr': 0.0, 'TotRmsAbvGrd': 0.0, 'Fireplaces': 0.0, 'GarageCars': 0.0, 'GarageArea': 0.0, 'WoodDeckSF': 0.0, 'OpenPorchSF': 0.0, 'EnclosedPorch': 0.0, '3SsnPorch': 0.0, 'ScreenPorch': 0.0, 'PoolArea': 0.0, 'MiscVal': 0.0, 'MoSold': 0.0, 'YrSold': 0.0, 'SalePrice': 0.0})
Missing_data_Per_dict_Not0: (3, 0.0833, {'LotFrontage': 0.177397, 'MasVnrArea': 0.005479, 'GarageYrBlt': 0.055479})
Missing_data_Per_dict_under01: (2, 0.0556, {'MasVnrArea': 0.005479, 'GarageYrBlt': 0.055479})
依次计算每列缺失值元素占比: {'LotFrontage': 0.177397, 'MasVnrArea': 0.005479, 'GarageYrBlt': 0.055479}
data_Missing_dict {'LotFrontage': 0.1773972602739726, 'LotArea': 0.0, 'OverallQual': 0.0, 'OverallCond': 0.0, 'YearBuilt': 0.0, 'YearRemodAdd': 0.0, 'MasVnrArea': 0.005479452054794521, 'BsmtFinSF1': 0.0, 'BsmtFinSF2': 0.0, 'BsmtUnfSF': 0.0, 'TotalBsmtSF': 0.0, '1stFlrSF': 0.0, '2ndFlrSF': 0.0, 'LowQualFinSF': 0.0, 'GrLivArea': 0.0, 'BsmtFullBath': 0.0, 'BsmtHalfBath': 0.0, 'FullBath': 0.0, 'HalfBath': 0.0, 'BedroomAbvGr': 0.0, 'KitchenAbvGr': 0.0, 'TotRmsAbvGrd': 0.0, 'Fireplaces': 0.0, 'GarageYrBlt': 0.05547945205479452, 'GarageCars': 0.0, 'GarageArea': 0.0, 'WoodDeckSF': 0.0, 'OpenPorchSF': 0.0, 'EnclosedPorch': 0.0, '3SsnPorch': 0.0, 'ScreenPorch': 0.0, 'PoolArea': 0.0, 'MiscVal': 0.0, 'MoSold': 0.0, 'YrSold': 0.0, 'SalePrice': 0.0}
after dropna (1121, 36)
<class 'numpy.ndarray'>
LotFrontage LotArea OverallQual ... MiscVal MoSold YrSold
0 -0.233570 -0.205885 0.570704 ... -0.141407 -1.615345 0.153084
1 0.384834 -0.064358 -0.153825 ... -0.141407 -0.498715 -0.596291
2 -0.109889 0.138702 0.570704 ... -0.141407 0.990125 0.153084
3 -0.439705 -0.070512 0.570704 ... -0.141407 -1.615345 -1.345665
4 0.549742 0.509132 1.295234 ... -0.141407 2.106755 0.153084
... ... ... ... ... ... ... ...
1116 -0.357251 -0.271480 -0.153825 ... -0.141407 0.617915 -0.596291
1117 0.590968 0.375605 -0.153825 ... -0.141407 -1.615345 1.651832
1118 -0.192343 -0.133030 0.570704 ... 14.947388 -0.498715 1.651832
1119 -0.109889 -0.049960 -0.878355 ... -0.141407 -0.870925 1.651832
1120 0.178699 -0.022885 -0.878355 ... -0.141407 -0.126505 0.153084
[1121 rows x 35 columns]
前10个主成分解释了数据中63.80%的变化
经过PCA后,进行第一层主成分分析-------------------------------------
[(0.16970682313415306, 'LotFrontage'), (0.1211669980146095, 'LotArea'), (0.3008665261375608, 'OverallQual'), (-0.1017783758120348, 'OverallCond'), (0.23754113423286216, 'YearBuilt'), (0.21067267847804322, 'YearRemodAdd'), (0.19125461510335365, 'MasVnrArea'), (0.14136511574315347, 'BsmtFinSF1'), (-0.013552848692716916, 'BsmtFinSF2'), (0.11439764110410199, 'BsmtUnfSF'), (0.259354275741638, 'TotalBsmtSF'), (0.2591780447881022, '1stFlrSF'), (0.11504305093601253, '2ndFlrSF'), (0.004231304806602964, 'LowQualFinSF'), (0.2877802164879641, 'GrLivArea'), (0.08317879411803167, 'BsmtFullBath'), (-0.02114280846249704, 'BsmtHalfBath'), (0.25499633884283257, 'FullBath'), (0.11080279874459822, 'HalfBath'), (0.1017767099777179, 'BedroomAbvGr'), (-0.01012145139988125, 'KitchenAbvGr'), (0.23572236584667458, 'TotRmsAbvGrd'), (0.17611466785004926, 'Fireplaces'), (0.23726651555979883, 'GarageYrBlt'), (0.2831568046802727, 'GarageCars'), (0.279827792756442, 'GarageArea'), (0.13036585867815073, 'WoodDeckSF'), (0.16664693092097654, 'OpenPorchSF'), (-0.08602539908222213, 'EnclosedPorch'), (0.010532579475601184, '3SsnPorch'), (0.02556170369869493, 'ScreenPorch'), (0.06246570190310543, 'PoolArea'), (-0.015493399959318557, 'MiscVal'), (0.028399126033275164, 'MoSold'), (-0.011129722622237775, 'YrSold')]
[(0.3008665261375608, 'OverallQual'), (0.2877802164879641, 'GrLivArea'), (0.2831568046802727, 'GarageCars'), (0.279827792756442, 'GarageArea'), (0.259354275741638, 'TotalBsmtSF'), (0.2591780447881022, '1stFlrSF'), (0.25499633884283257, 'FullBath'), (0.23754113423286216, 'YearBuilt'), (0.23726651555979883, 'GarageYrBlt'), (0.23572236584667458, 'TotRmsAbvGrd'), (0.21067267847804322, 'YearRemodAdd'), (0.19125461510335365, 'MasVnrArea'), (0.17611466785004926, 'Fireplaces'), (0.16970682313415306, 'LotFrontage'), (0.16664693092097654, 'OpenPorchSF'), (0.14136511574315347, 'BsmtFinSF1'), (0.13036585867815073, 'WoodDeckSF'), (0.1211669980146095, 'LotArea'), (0.11504305093601253, '2ndFlrSF'), (0.11439764110410199, 'BsmtUnfSF'), (0.11080279874459822, 'HalfBath'), (0.1017767099777179, 'BedroomAbvGr'), (0.08317879411803167, 'BsmtFullBath'), (0.06246570190310543, 'PoolArea'), (0.028399126033275164, 'MoSold'), (0.02556170369869493, 'ScreenPorch'), (0.010532579475601184, '3SsnPorch'), (0.004231304806602964, 'LowQualFinSF'), (-0.01012145139988125, 'KitchenAbvGr'), (-0.011129722622237775, 'YrSold'), (-0.013552848692716916, 'BsmtFinSF2'), (-0.015493399959318557, 'MiscVal'), (-0.02114280846249704, 'BsmtHalfBath'), (-0.08602539908222213, 'EnclosedPorch'), (-0.1017783758120348, 'OverallCond')]
经过PCA后,进行第二层主成分分析-------------------------------------
[(0.037140668512444255, 'LotFrontage'), (0.005762269875424171, 'LotArea'), (-0.02265545744738413, 'OverallQual'), (0.06797580738610676, 'OverallCond'), (-0.22034458100877843, 'YearBuilt'), (-0.11769773674122082, 'YearRemodAdd'), (-0.02330741979867707, 'MasVnrArea'), (-0.26830830083400875, 'BsmtFinSF1'), (-0.06776753790369254, 'BsmtFinSF2'), (0.10349973537774373, 'BsmtUnfSF'), (-0.2014230745261159, 'TotalBsmtSF'), (-0.14501101153644946, '1stFlrSF'), (0.43960496790131565, '2ndFlrSF'), (0.11932040000909688, 'LowQualFinSF'), (0.2706724094458561, 'GrLivArea'), (-0.2741406761479087, 'BsmtFullBath'), (-0.001880261013674545, 'BsmtHalfBath'), (0.12608264523927462, 'FullBath'), (0.23358978781221817, 'HalfBath'), (0.3864399252645517, 'BedroomAbvGr'), (0.12179545892853964, 'KitchenAbvGr'), (0.3371810668951179, 'TotRmsAbvGrd'), (0.06581774146310777, 'Fireplaces'), (-0.1834261688794573, 'GarageYrBlt'), (-0.04640661259007604, 'GarageCars'), (-0.08613653500685643, 'GarageArea'), (-0.047991361825782064, 'WoodDeckSF'), (0.03130768246434415, 'OpenPorchSF'), (0.13376424222015906, 'EnclosedPorch'), (-0.02564456693744644, '3SsnPorch'), (0.04211790221668751, 'ScreenPorch'), (0.03032238859229474, 'PoolArea'), (0.04968459727862472, 'MiscVal'), (0.02754218343139985, 'MoSold'), (-0.04555808126996797, 'YrSold')]
[(0.43960496790131565, '2ndFlrSF'), (0.3864399252645517, 'BedroomAbvGr'), (0.3371810668951179, 'TotRmsAbvGrd'), (0.2706724094458561, 'GrLivArea'), (0.23358978781221817, 'HalfBath'), (0.13376424222015906, 'EnclosedPorch'), (0.12608264523927462, 'FullBath'), (0.12179545892853964, 'KitchenAbvGr'), (0.11932040000909688, 'LowQualFinSF'), (0.10349973537774373, 'BsmtUnfSF'), (0.06797580738610676, 'OverallCond'), (0.06581774146310777, 'Fireplaces'), (0.04968459727862472, 'MiscVal'), (0.04211790221668751, 'ScreenPorch'), (0.037140668512444255, 'LotFrontage'), (0.03130768246434415, 'OpenPorchSF'), (0.03032238859229474, 'PoolArea'), (0.02754218343139985, 'MoSold'), (0.005762269875424171, 'LotArea'), (-0.001880261013674545, 'BsmtHalfBath'), (-0.02265545744738413, 'OverallQual'), (-0.02330741979867707, 'MasVnrArea'), (-0.02564456693744644, '3SsnPorch'), (-0.04555808126996797, 'YrSold'), (-0.04640661259007604, 'GarageCars'), (-0.047991361825782064, 'WoodDeckSF'), (-0.06776753790369254, 'BsmtFinSF2'), (-0.08613653500685643, 'GarageArea'), (-0.11769773674122082, 'YearRemodAdd'), (-0.14501101153644946, '1stFlrSF'), (-0.1834261688794573, 'GarageYrBlt'), (-0.2014230745261159, 'TotalBsmtSF'), (-0.22034458100877843, 'YearBuilt'), (-0.26830830083400875, 'BsmtFinSF1'), (-0.2741406761479087, 'BsmtFullBath')]
不进行PCA的线性回归的MSE是1644140595.6636596
前10个PCA主成分进行线性回归的MSE是1836601962.4751632
[1e-10, 1e-09, 1e-08, 1e-07, 1e-06, 1e-05, 0.0001, 0.001, 0.01, 0.1]
[1642818822.3530025, 1642818822.3529558, 1642818822.3524888, 1642818822.3471866, 1642818822.3005185, 1642818821.7415214, 1642818817.1179569, 1642818756.7038794, 1642818283.0732899, 1642813588.5752773]
[1e-10, 1e-09, 1e-08, 1e-07, 1e-06, 1e-05, 0.0001, 0.001, 0.01, 0.1]
[1836601962.4751682, 1836601962.4752123, 1836601962.475657, 1836601962.480097, 1836601962.5245085, 1836601962.9652405, 1836601967.4063494, 1836602011.8174434, 1836602455.9288514, 1836606882.1034737]
核心代码
PCA
class TruncatedSVD Found at: sklearn.decomposition._truncated_svd
class TruncatedSVD(TransformerMixin, BaseEstimator):
"""Dimensionality reduction using truncated SVD (aka LSA).
This transformer performs linear dimensionality reduction by means of
truncated singular value decomposition (SVD). Contrary to PCA, this
estimator does not center the data before computing the singular value
decomposition. This means it can work with sparse matrices
efficiently.
In particular, truncated SVD works on term count/tf-idf matrices as
returned by the vectorizers in :mod:`sklearn.feature_extraction.text`. In
that context, it is known as latent semantic analysis (LSA).
This estimator supports two algorithms: a fast randomized SVD solver,
and
a "naive" algorithm that uses ARPACK as an eigensolver on `X * X.T` or
`X.T * X`, whichever is more efficient.
LinearRegression
class LinearRegression Found at: sklearn.linear_model._base
class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):
"""
Ordinary least squares Linear Regression.
LinearRegression fits a linear model with coefficients w = (w1, ..., wp)
to minimize the residual sum of squares between the observed targets in
the dataset, and the targets predicted by the linear approximation.
Lasso
class Lasso Found at: sklearn.linear_model._coordinate_descent
class Lasso(ElasticNet):
"""Linear Model trained with L1 prior as regularizer (aka the Lasso)
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Technically the Lasso model is optimizing the same objective function as
the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty).
Read more in the :ref:`User Guide <lasso>`.