引理:当计算第 \(i\) 位的失配指针时,若 \(j_0\) 是一个候选条件,那么小于 \(j_0\) 的最大候选条件是 \(fail[j_0]\)。
证明:反证法。假设存在 \(j_1\),使得\(fail[j_0]<j_1<j_0\),那么\(s[1,j_0]=s[i-j_0+1,i],s[i,j_1]=s[i-j_1+1,i],s[j_0-j_1+1,j_0]=s[i-j_1+1,i]\),可知\(s[1,j_1]=s[j_0-j_1+1]\),根据\(fail[\ ]\)数组的极大性可知产生了矛盾,证毕。
时间复杂度为\(O(n)\)
代码如下
// luogu-judger-enable-o2
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
string s, t;
cin >> s >> t;
int n = s.size(), m = t.size();
vector<int> fail(m, -1);
auto getfail = [&]() {
for (int i = 1, j = -1; i < m; i++) {
while (j != -1 && t[j + 1] != t[i]) {
j = fail[j];
}
if (t[j + 1] == t[i]) {
++j;
}
fail[i] = j;
}
};
getfail();
auto match = [&]() {
for (int i = 0, j = -1; i < n; i++) {
while (j != -1 && t[j + 1] != s[i]) {
j = fail[j];
}
if (t[j + 1] == s[i]) {
++j;
}
if (j == m - 1) {
cout << i - m + 2 << endl;
}
}
};
match();
for (auto v : fail) {
cout << v + 1 << " ";
}
cout << endl;
return 0;
}